首页> 外文OA文献 >Elevator Fault Detection Using Profile Extraction and Deep Autoencoder Feature Extraction for Acceleration and Magnetic Signals
【2h】

Elevator Fault Detection Using Profile Extraction and Deep Autoencoder Feature Extraction for Acceleration and Magnetic Signals

机译:电梯故障检测采用轮廓提取和深度自动化器特征提取,用于加速度和磁信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a new algorithm for data extraction from time-series data, and furthermore automatic calculation of highly informative deep features to be used in fault detection. In data extraction, elevator start and stop events are extracted from sensor data including both acceleration and magnetic signals. In addition, a generic deep autoencoder model is also developed for automated feature extraction from the extracted profiles. After this, extracted deep features are classified with random forest algorithm for fault detection. Sensor data are labelled as healthy and faulty based on the maintenance actions recorded. The remaining healthy data are used for validation of the model to prove its efficacy in terms of avoiding false positives. We have achieved above 90% accuracy in fault detection along with avoiding false positives based on new extracted deep features, which outperforms results using existing features. Existing features are also classified with random forest to compare results. Our developed algorithm provides better results due to the new deep features extracted from the dataset when compared to existing features. This research will help various predictive maintenance systems to detect false alarms, which will in turn reduce unnecessary visits of service technicians to installation sites.
机译:在本文中,我们提出了一种新的数据提取算法,从时间序列数据提取,此外,自动计算出故障检测中的高度信息丰富的深度功能。在数据提取中,从包括加速度和磁信号的传感器数据提取电梯开始和停止事件。此外,还开发了一种通用的深度自动拓模型,用于从提取的轮廓中自动化特征提取。在此之后,提取的深度特征分类为随机林算法进行故障检测。传感器数据根据记录的维护操作标记为健康和故障。剩余的健康数据用于验证模型,以证明避免误报的效果。我们在故障检测方面获得了高于90%的精度,以及避免基于新的提取的深度特征的误报,这优于使用现有功能。现有功能也分类为随机林以比较结果。由于与现有功能相比,我们发达的算法由于从数据集中提取的新的深度特征而提供更好的结果。本研究将有助于各种预测性维护系统检测误报,这反过来将减少服务技术人员对安装网站的不必要访问。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号