首页> 外文OA文献 >Early diagnosis of Alzheimer’s disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images
【2h】

Early diagnosis of Alzheimer’s disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images

机译:利用塑料素形态学的组合特征及皮质,皮质,和MRI T1脑图像的血管基地和海马区域的早期诊断血管疾病的早期诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, several high-dimensional, accurate, and effective classification methods have been proposed for the automatic discrimination of the subject between Alzheimer's disease (AD) or its prodromal phase {i.e., mild cognitive impairment (MCI)} and healthy control (HC) persons based on T1-weighted structural magnetic resonance imaging (sMRI). These methods emphasis only on using the individual feature from sMRI images for the classification of AD, MCI, and HC subjects and their achieved classification accuracy is low. However, latest multimodal studies have shown that combining multiple features from different sMRI analysis techniques can improve the classification accuracy for these types of subjects. In this paper, we propose a novel classification technique that precisely distinguishes individuals with AD, aAD (stable MCI, who had not converted to AD within a 36-month time period), and mAD (MCI caused by AD, who had converted to AD within a 36-month time period) from HC individuals. The proposed method combines three different features extracted from structural MR (sMR) images using voxel-based morphometry (VBM), hippocampal volume (HV), and cortical and subcortical segmented region techniques. Three classification experiments were performed (AD vs. HC, aAD vs. mAD, and HC vs. mAD) with 326 subjects (171 elderly controls and 81 AD, 35 aAD, and 39 mAD patients). For the development and validation of the proposed classification method, we acquired the sMR images from the dataset of the National Research Center for Dementia (NRCD). A five-fold cross-validation technique was applied to find the optimal hyperparameters for the classifier, and the classification performance was compared by using three well-known classifiers: K-nearest neighbor, support vector machine, and random forest. Overall, the proposed model with the SVM classifier achieved the best performance on the NRCD dataset. For the individual feature, the VBM technique provided the best results followed by the HV technique. However, the use of combined features improved the classification accuracy and predictive power for the early classification of AD compared to the use of individual features. The most stable and reliable classification results were achieved when combining all extracted features. Additionally, to analyze the efficiency of the proposed model, we used the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to compare the classification performance of the proposed model with those of several state-of-the-art methods.
机译:近年来,已经提出了几种高维,准确和有效的分类方法,用于自动歧视阿尔茨海默病(AD)或其前脯氨酸阶段(即,轻度认知障碍(MCI)}和健康对照(HC) )基于T1加权结构磁共振成像(SMRI)的人。这些方法仅重点使用SMRI图像的单个特征来进行广告,MCI和HC科目的分类,并且它们所实现的分类精度低。然而,最新的多式化研究表明,组合来自不同SMRI分析技术的多个特征可以提高这些类型的受试者的分类精度。在本文中,我们提出了一种新颖的分类技术,精确区分个人与广告,AAD(稳定的MCI,他们在36个月的时间段内没有转换为广告),而且发疯(由广告造成的MCI,已转换为广告在36个月的时间段内)来自HC个人。所提出的方法使用基于体形态(VBM),海马体积(HV)和皮质和皮质分段区域技术结合了从结构MR(SMR)图像中提取的三种不同特征。三个分类实验进行(AD与HC,AAD与MAD和HC与MAD)与326名受试者(171个老年对照和AD 81,35 AAD和39 MAD例)。对于拟议的分类方法的开发和验证,我们从国家研究中心的DEMENIA(NRCD)的数据集中获得了SMR图像。应用五倍的交叉验证技术来查找分类器的最佳超参数,并使用三个公知的分类器进行比较分类性能:k最近邻居,支持向量机和随机林。总的来说,具有SVM分类器的建议模型在NRCD数据集中实现了最佳性能。对于个别特征,VBM技术提供了最佳结果,然后是HV技术。然而,与使用单个特征相比,使用组合特征的使用改善了广告早期分类的分类准确性和预测力。当结合所有提取的特征时,实现了最稳定和可靠的分类结果。另外,为了分析所提出的模型的效率,我们使用了Alzheimer的疾病神经影像倡议(ADNI)数据集,以比较所提出的模型的分类性能与几种最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号