首页> 外文OA文献 >A new computational model captures fundamental architectural features of diverse biological networks
【2h】

A new computational model captures fundamental architectural features of diverse biological networks

机译:一个新的计算模型捕获了多种生物网络的基本架构特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex biological systems are often represented by network graphs. However, their structural features are not adequately captured by existing computational graph models, perhaps because the datasets used to assemble them are incomplete and contain elements that lack shared functions. Here, we analyze three large, near-complete networks that produce specific cellular or behavioral outputs: a molecular yeast mitochondrial regulatory protein network, and two anatomical networks of very different scale, the mouse brain mesoscale connectivity network, and the C. elegans neuronal network. Surprisingly, these networks share similar characteristics. All consist of large communities composed of modules with general functions, and topologically distinct subnetworks spanning modular boundaries responsible for their more specific phenotypical outputs. We created a new model, SBM-PS, which generates networks by combining communities, followed by adjustment of connections by a path selection mechanism. This model captures fundamental architectural features that are common to the three networks.
机译:复杂的生物系统通常由网络图表示。但是,现有的计算图形模型无法充分捕获它们的结构特征,这可能是因为用于组装它们的数据集不完整并且包含缺少共享功能的元素。在这里,我们分析了产生特定细胞或行为输出的三个大型,接近完整的网络:一个分子酵母线粒体调控蛋白网络,以及两个规模截然不同的解剖网络,鼠标脑中尺度连接网络和秀丽隐杆线虫神经元网络。 。令人惊讶的是,这些网络具有相似的特征。所有这些都由大型社区组成,这些大型社区由具有通用功能的模块以及跨越模块边界的拓扑结构不同的子网组成,这些子网负责其更具体的表型输出。我们创建了一个新模型SBM-PS,该模型通过组合社区来生成网络,然后通过路径选择机制来调整连接。该模型捕获了这三个网络共有的基本体系结构特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号