首页> 外文OA文献 >Causal Discovery from Subsampled Time Series Data by Constraint Optimization
【2h】

Causal Discovery from Subsampled Time Series Data by Constraint Optimization

机译:通过约束优化从次采样时间序列数据中发现因果关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on causal structure estimation from time series data in which measurements are obtained at a coarser timescale than the causal timescale of the underlying system. Previous work has shown that such subsampling can lead to significant errors about the system’s causal structure if not properly taken into account. In this paper, we first consider the search for the system timescale causal structures that correspond to a given measurement timescale structure. We provide a constraint satisfaction procedure whose computational performance is several orders of magnitude better than previous approaches. We then consider finite-sample data as input, and propose the first constraint optimization approach for recovering the system timescale causal structure. This algorithm optimally recovers from possible conflicts due to statistical errors. More generally, these advances allow for a robust and non-parametric estimation of system timescale causal structures from subsampled time series data.
机译:本文着重于从时间序列数据中进行因果结构估计,在这些时间序列数据中,以比基础系统的因果时间尺度更粗糙的时尺度获得测量结果。先前的工作表明,如果未适当考虑,这种二次采样会导致有关系统因果结构的重大错误。在本文中,我们首先考虑搜索与给定测量时标结构相对应的系统时标因果结构。我们提供了一个约束满足程序,其计算性能比以前的方法好几个数量级。然后,我们将有限样本数据作为输入,并提出了用于恢复系统时标因果结构的第一种约束优化方法。该算法可以最佳地从由于统计错误导致的可能冲突中恢复。更一般地,这些进步允许从子采样的时间序列数据中对系统时间尺度因果结构进行鲁棒且非参数的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号