首页> 外文OA文献 >RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks
【2h】

RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks

机译:RNA3DCNN:使用3D深度卷积神经网络的RNA 3D结构的本地和全球质量评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quality assessment is essential for the computational prediction and design of RNA tertiary structures. To date, several knowledge-based statistical potentials have been proposed and proved to be effective in identifying native and near-native RNA structures. All these potentials are based on the inverse Boltzmann formula, while differing in the choice of the geometrical descriptor, reference state, and training dataset. Via an approach that diverges completely from the conventional statistical potentials, our work explored the power of a 3D convolutional neural network (CNN)-based approach as a quality evaluator for RNA 3D structures, which used a 3D grid representation of the structure as input without extracting features manually. The RNA structures were evaluated by examining each nucleotide, so our method can also provide local quality assessment. Two sets of training samples were built. The first one included 1 million samples generated by high-temperature molecular dynamics (MD) simulations and the second one included 1 million samples generated by Monte Carlo (MC) structure prediction. Both MD and MC procedures were performed for a non-redundant set of 414 RNAs. For two training datasets (one including only MD training samples and the other including both MD and MC training samples), we trained two neural networks, named RNA3DCNN_MD and RNA3DCNN_MDMC, respectively. The former is suitable for assessing near-native structures, while the latter is suitable for assessing structures covering large structural space. We tested the performance of our method and made comparisons with four other traditional scoring functions. On two of three test datasets, our method performed similarly to the state-of-the-art traditional scoring function, and on the third test dataset, our method was far superior to other scoring functions. Our method can be downloaded from https://github.com/lijunRNA/RNA3DCNN.
机译:质量评估对于RNA三级结构的计算预测和设计至关重要。迄今为止,已经提出了几种基于知识的统计潜力,并证明有效地识别天然和近天然RNA结构。所有这些潜力都基于反向Boltzmann公式,而在几何描述符,参考状态和训练数据集的选择中不同。通过一种方法完全来自传统统计潜力,我们的工作探索了3D卷积神经网络(CNN)的功率作为RNA 3D结构的质量评估器,其使用结构的3D网格表示为输入而没有手动提取功能。通过检查每个核苷酸来评估RNA结构,因此我们的方法还可以提供局部质量评估。建造了两套培训样本。第一个包括由高温分子动力学(MD)模拟产生的100万个样品,第二个样品包括由蒙特卡罗(MC)结构预测产生的100万个样品。对于非冗余的414 RNA,执行MD和MC程序。对于两个训练数据集(仅包括MD培训样本以及其他包括MD和MC训练样本),我们分别培训了两个名为RNA3DCNN_MD和RNA3DCN_MDMC的神经网络。前者适用于评估近天然结构,而后者适用于评估覆盖大结构空间的结构。我们测试了我们的方法的性能,并与其他四个传统评分功能进行了比较。在三个测试数据集中的两个中,我们的方法与最先进的传统评分功能类似,以及在第三个测试数据集上,我们的方法远远优于其他评分功能。我们的方法可以从https://github.com/lijunrna/rna3dcnn下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号