首页> 外文OA文献 >Single-shot compressed ultrafast photography at one hundred billion frames per second
【2h】

Single-shot compressed ultrafast photography at one hundred billion frames per second

机译:每秒压缩一千亿帧的单次压缩超快摄影

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10^5 frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal–oxide–semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10^7 frames per second. Despite these sensors’ widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10^(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x–y–t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent—such as fluorescent or bioluminescent—objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP’s capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical research.
机译:摄影师长期以来一直寻求以高成像速度捕获瞬态场景,早期的例子是众所周知的1878年运动中的马的记录和1887年的超音速子弹的照片。但是,直到二十世纪后期,在演示超高速成像(每秒超过10 ^ 5帧)方面才取得了突破。特别是,基于电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)技术的电子成像传感器的推出彻底改变了高速摄影技术,使每秒的采集速率高达10 ^ 7帧。尽管这些传感器产生了广泛的影响,但使用CCD或CMOS技术进一步提高帧速率从根本上受到其片上存储和电子读出速度的限制。在这里,我们演示了一种二维动态成像技术,即压缩超快速摄影(CUP),它可以以高达每秒10 ^(11)帧的速度捕获非重复的时间演变事件。与现有的超快速成像技术相比,CUP的显着优势是可以通过单个摄像机快照测量x–y–t(x,y,空间坐标; t,时间)场景,从而可以以数十倍的时间分辨率观察瞬态事件。皮秒。此外,类似于传统摄影,CUP是仅接收的,因此不需要其他单次超快成像仪所需的专用主动照明。结果,CUP可以对各种发光物体(例如荧光或生物发光)成像。使用CUP,我们仅用一次激光就能看到四个基本的物理现象:激光脉冲的反射和折射,两种介质中的光子加速以及非信息的光速传播(也就是说,运动的速度快于光速)。轻但不能传达信息)。鉴于CUP的能力,我们希望它能够在基础和应用科学(包括生物医学研究)中找到广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号