首页> 外文OA文献 >MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
【2h】

MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster

机译:MCMC函数方法:修改旧算法以使其更快

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many problems arising in applications result in the need to probe a probability distribution for functions. Examples include Bayesian nonparametric statistics and conditioned diffusion processes. Standard MCMC algorithms typically become arbitrarily slow under the mesh refinement dictated by nonparametric description of the unknown function. We describe an approach to modifying a whole range of MCMC methods, applicable whenever the target measure has density with respect to a Gaussian process or Gaussian random field reference measure, which ensures that their speed of convergence is robust under mesh refinement.ududGaussian processes or random fields are fields whose marginal distributions, when evaluated at any finite set of NNpoints, are ℝ^N-valued Gaussians. The algorithmic approach that we describe is applicable not only when the desired probability measure has density with respect to a Gaussian process or Gaussian random field reference measure, but also to some useful non-Gaussian reference measures constructed through random truncation. In the applications of interest the data is often sparse and the prior specification is an essential part of the overall modelling strategy. These Gaussian-based reference measures are a very flexible modelling tool, finding wide-ranging application. Examples are shown in density estimation, data assimilation in fluid mechanics, subsurface geophysics and image registration.ududThe key design principle is to formulate the MCMC method so that it is, in principle, applicable for functions; this may be achieved by use of proposals based on carefully chosen time-discretizations of stochastic dynamical systems which exactly preserve the Gaussian reference measure. Taking this approach leads to many new algorithms which can be implemented via minor modification of existing algorithms, yet which show enormous speed-up on a wide range of applied problems.
机译:应用程序中出现的许多问题导致需要探查函数的概率分布。例子包括贝叶斯非参数统计和条件扩散过程。在未知函数的非参数描述所指示的网格细化下,标准MCMC算法通常会变得缓慢。我们描述了一种修改整个MCMC方法的方法,该方法适用于目标度量相对于高斯过程或高斯随机场参考度量具有密度的情况,从而确保其收敛速度在网格细化下是鲁棒的。进程或随机字段是这样的字段,当在任意有限的NNpoint集上进行评估时,其边际分布为ℝ^ N值高斯。我们描述的算法方法不仅适用于所需概率度量相对于高斯过程或高斯随机场参考度量具有密度的情况,而且适用于通过随机截断构造的一些有用的非高斯参考度量。在感兴趣的应用中,数据通常是稀疏的,并且先验规范是整个建模策略的重要组成部分。这些基于高斯的参考度量是一种非常灵活的建模工具,可广泛应用。密度估算,流体力学中的数据同化,地下地球物理学和图像配准等示例。 ud ud关键设计原理是制定MCMC方法,以便使其原则上适用于功能。这可以通过使用基于精确选择的随机动力学系统时间离散的建议来实现,该建议精确地保留了高斯参考度量。采用这种方法会导致许多新算法,这些算法可以通过对现有算法进行较小的修改来实现,但这些算法在广泛的应用问题上显示出极大的提速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号