首页> 外文OA文献 >Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
【2h】

Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems

机译:椭圆逆问题中后验期望的拟蒙特卡罗和多层蒙特卡洛方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We are interested in computing the expectation of a functional of a PDE solution under a Bayesian posterior distribution. Using Bayes's rule, we reduce the problem to estimating the ratio of two related prior expectations. For a model elliptic problem, we provide a full convergence and complexity analysis of the ratio estimator in the case where Monte Carlo, quasi-Monte Carlo, or multilevel Monte Carlo methods are used as estimators for the two prior expectations. We show that the computational complexity of the ratio estimator to achieve a given accuracy is the same as the corresponding complexity of the individual estimators for the numerator and the denominator. We also include numerical simulations, in the context of the model elliptic problem, which demonstrate the effectiveness of the approach.
机译:我们对计算贝叶斯后验分布下PDE解决方案功能的期望值感兴趣。使用贝叶斯定律,我们将问题简化为估计两个相关先验期望的比率。对于模型椭圆问题,在使用蒙特卡洛,准蒙特卡洛或多层蒙特卡洛方法作为两个先验期望的估计量的情况下,我们提供了比率估计量的完整收敛性和复杂性分析。我们表明,实现给定精度的比率估计器的计算复杂度与分子和分母的各个估计器的相应复杂度相同。在模型椭圆问题的背景下,我们还包括了数值模拟,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号