首页> 外文OA文献 >Towards Automatic 3D Shape Instantiation for Deployed Stent Grafts: 2D Multiple-class and Class-imbalance Marker Segmentation with Equally-weighted Focal U-Net
【2h】

Towards Automatic 3D Shape Instantiation for Deployed Stent Grafts: 2D Multiple-class and Class-imbalance Marker Segmentation with Equally-weighted Focal U-Net

机译:朝向部署支架移植物的自动3D形状实例化:2D多级和类别 - 不平衡标记分割,具有同等加权焦点U-Net

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Small object segmentation is a common task in medical image analysis.Traditional feature-based methods require human intervention while methodsbased on deep learning train the neural network automatically. However, it isstill error prone when applying deep learning methods for small objects. Inthis paper, Focal FCN was proposed for small object segmentation with limitedtraining data. Firstly, Fully-weighted FCN was proposed to apply aninitialization for Focal FCN by adding weights to the background and foregroundloss. Secondly, focal loss was applied to make the training focus onwrongly-classified pixels and hence achieve good performance on small objectsegmentation. Comparisons between FCN, Weighted FCN, Fully-weighted FCN andFocal FCN were tested on customized stent graft marker segmentation.
机译:小对象分割是医学图像分析中的共同任务。基于特征的方法需要人为干预,而在深度学习中自动进行神经网络。但是,在应用小物体的深度学习方法时,它易于出错。 Inthis纸张,提出了具有限定数据的小对象细分的焦点FCN。首先,提出了通过向背景和前景阵列添加重量来对焦点FCN应用焦义FCN的全加权FCN。其次,临界损失适用于使培训焦点对群体分类的像素进行培训,从而在小对象中实现了良好的性能。在定制支架移植物标记分割上测试FCN,加权FCN,全加权FCN和FCN和FCN和FCN的比较。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号