首页> 外文OA文献 >A multiscale ocean data assimilation approach combining spatial and spectral localisation
【2h】

A multiscale ocean data assimilation approach combining spatial and spectral localisation

机译:多尺度海洋数据同化方法结合空间和光谱定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ocean data assimilation systems encompass a wide range of scalesthat are difficult to control simultaneously using partial observationnetworks. All scales are not observable by all observation systems, which isnot easily taken into account in current ocean operational systems. The mainreason for this difficulty is that the error covariance matrices are usuallyassumed to be local (e.g. using a localisation algorithm in ensemble dataassimilation systems), so that the large-scale patterns are removed from theerror statistics. To better exploit the observational information available for all scales inthe assimilation systems of the Copernicus Marine Environment MonitoringService, we investigate a new method to introduce scale separation in theassimilation scheme. The method is based on a spectral transformation of the assimilation problemand consists in carrying out the analysis with spectral localisation for thelarge scales and spatial localisation for the residual scales. The target isto improve the observational update of the large-scale components of thesignal by an explicit observational constraint applied directly on the largescales and to restrict the use of spatial localisation to the small-scalecomponents of the signal. To evaluate our method, twin experiments are carried out with syntheticaltimetry observations (simulating the Jason tracks), assimilated in a1/4∘ model configuration of the North Atlantic and the Nordic Seas. Results show that the transformation to the spectral domain and the spectrallocalisation provides consistent ensemble estimates of the state of thesystem (in the spectral domain or after backward transformation to thespatial domain). Combined with spatial localisation for the residual scales,the new scheme is able to provide a reliable ensemble update for all scales,with improved accuracy for the large scale; and the performance of the systemcan be checked explicitly and separately for all scales in the assimilationsystem.
机译:海洋数据同化系统包括使用部分观察网络同时控制广泛的Scalesthat。所有尺度都不可观察到所有观察系统,这在当前的海洋操作系统中很容易考虑。这种难度的前仲裁是错误协方差矩阵通常是局部的(例如,使用集合数据分类系统中的定位算法),从而从SERROR统计中移除大规模模式。为了更好地利用各种各样的哥伦比亚海洋环境监测器的Assmilation系统可用的观测信息,我们调查了一种新的方法,以引入短纤维化方案的规模分离。该方法基于同化问题的频谱变换,包括在进行分析的分析,用于对剩余尺度的特拉基尺度和空间定位的频谱定位。目标是通过直接在大型群体上应用的明确观察约束来改善Thesignal的大规模组件的观测更新,并限制使用空间定位到信号的小型分数。为了评估我们的方法,通过综合分析观察(模拟Jason轨道)进行双实验,在北大西洋和北欧的A1 / 43型模型配置中同化。结果表明,对光谱域和光谱分析的变换提供了一致的合作状态(在光谱域或后向变换到表示域之后)的一致集合估计。结合剩余尺度的空间定位,新方案能够为所有秤提供可靠的集合更新,提高了大规模的精度;系统扫描的性能是明确的,并分别检查Assimilationsystem中的所有尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号