首页> 外文OA文献 >Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
【2h】

Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K

机译:从298 K的从头算分子动力学自由能计算得出具有完全还原Cu(100)上CO的动力学的完整原子反应机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A critical step toward the rational design of new catalysts that achieve selective and efficient reduction of CO_2 to specific hydrocarbons and oxygenates is to determine the detailed reaction mechanism including kinetics and product selectivity as a function of pH and applied potential for known systems. To accomplish this, we apply ab initio molecular metadynamics simulations (AIMμD) for the water/Cu(100) system with five layers of the explicit solvent under a potential of −0.59 V [reversible hydrogen electrode (RHE)] at pH 7 and compare with experiment. From these free-energy calculations, we determined the kinetics and pathways for major products (ethylene and methane) and minor products (ethanol, glyoxal, glycolaldehyde, ethylene glycol, acetaldehyde, ethane, and methanol). For an applied potential (U) greater than −0.6 V (RHE) ethylene, the major product, is produced via the Eley–Rideal (ER) mechanism using H_2O + e^–. The rate-determining step (RDS) is C–C coupling of two CO, with ΔG‡ = 0.69 eV. For an applied potential less than −0.60 V (RHE), the rate of ethylene formation decreases, mainly due to the loss of CO surface sites, which are replaced by H*. The reappearance of C_2H_4 along with CH_4 at U less than −0.85 V arises from *CHO formation produced via an ER process of H* with nonadsorbed CO (a unique result). This *CHO is the common intermediate for the formation of both CH_4 and C_2H_4. These results suggest that, to obtain hydrocarbon products selectively and efficiency at pH 7, we need to increase the CO concentration by changing the solvent or alloying the surface.
机译:合理设计可实现将CO_2选择性和有效还原为特定碳氢化合物和含氧化合物的新型催化剂的关键步骤是确定详细的反应机理,包括动力学和产物选择性与pH的关系以及已知系统的应用潜力。为此,我们对水/铜(100)系统进行了从头算的分子动力学模拟(AIMμD),该系统具有五层显式溶剂,在pH为7的-0.59 V [可逆氢电极(RHE)]电位下进行比较与实验。从这些自由能计算中,我们确定了主要产物(乙烯和甲烷)和次要产物(乙醇,乙二醛,乙醇醛,乙二醇,乙醛,乙烷和甲醇)的动力学和途径。对于大于-0.6 V(RHE)的施加电势(U),主要产物乙烯是通过使用H_2O + e ^ –的Eley–Rideal(ER)机制产生的。速率确定步骤(RDS)是两个CO的CC耦合,ΔG‡= 0.69 eV。对于小于-0.60 V(RHE)的施加电势,乙烯形成速率降低,这主要是由于失去了被H *取代的CO表面位。 C_2H_4和CH_4在U小于-0.85 V时会重新出现,这是由于通过H *的ER工艺与未吸附的CO生成的* CHO形成的(唯一的结果)。该* CHO是形成CH_4和C_2H_4的常见中间体。这些结果表明,要有选择地获得烃类产品并在pH值为7时获得效率,我们需要通过改变溶剂或使表面合金化来增加CO浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号