首页> 外文OA文献 >Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning
【2h】

Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning

机译:通过深度学习提高实时傅里叶单像素成像的成像质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5−8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.
机译:傅里叶单像素成像(FSPI)是众所周知的,用于重建高质量的图像,而是仅以长成像时间的成本。对于实时应用,FSPI依赖于采样的底层重建,未能提供高质量的图像。为了提高实时FSPI的成像质量,提出了一种基于深度学习(DL)的快速图像重建框架。更具体地,采用具有对称跳过连接架构的深度卷积的AutoEnder网络,用于实时96×96成像在非常低的采样率(5-8%)。网络培训在大型图像集上,并且能够在训练期间重建不同的图像。有前途的实验结果表明,所提出的FSPI与DL(称为DL-FSPI)耦合的,在非常低的采样率下,图像质量方面优于传统的FSPI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号