Identity-based cryptography is a type of public key cryptography with simple key management procedures. To our knowledge, till now, the existing identity-based cryptography based on NTRU is all over power-of-2 cyclotomic rings. Whether there is provably secure identity-based cryptography over more general fields is still open. In this paper, with the help of the results of collision resistance preimage sampleable functions (CRPSF) over cyclotomic fields, we give concrete constructions of provably secure identity-based encryption schemes (IBE) and identity-based signature schemes (IBS) based on NTRU over any cyclotomic field. Our IBE schemes are provably secure under adaptive chosen-plaintext and adaptive chosen-identity attacks, meanwhile, our IBS schemes are existentially unforgeable against adaptively chosen message and adaptively chosen identity attacks for any probabilistic polynomial time (PPT) adversary in the random oracle model. The securities of both schemes are based on the worst-case approximate shortest independent vectors problem (SIVPγ) over corresponding ideal lattices. The secret key size of our IBE (IBS) scheme is short—only one (two) ring element(s). The ciphertext (signature) is also short—only two (three) ring elements. Meanwhile, as the case of NTRUEncrypt, our IBE scheme could encrypt n bits in each encryption process. These properties may make our schemes have more advantages for some IoT applications over postquantum world in theory.
展开▼