首页> 外文OA文献 >Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators
【2h】

Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators

机译:使用微环形光学谐振器对单个纳米颗粒和生物分子进行无标记检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-molecule detection is one of the fundamental challenges of modern biology. Such experiments often use labels that can be expensive, difficult to produce, and for small analytes, might perturb the molecular events being studied. Analyte size plays an important role in determining detectability. Here we use laser-frequency locking in the context of sensing to improve the signal-to-noise ratio of microtoroid optical resonators to the extent that single nanoparticles 2.5 nm in radius, and 15.5 kDa molecules are detected in aqueous solution, thereby bringing these detectors to the size limits needed for detecting the key macromolecules of the cell. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the ‘reactive’ model prediction for the frequency shift of the resonator upon particle binding. This confirms that the main contribution of the frequency shift for the resonator upon particle binding is an increase in the effective path length due to part of the evanescent field coupling into the adsorbed particle. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor–ligand and protein–protein interactions in real time.
机译:单分子检测是现代生物学的基本挑战之一。此类实验通常使用价格昂贵,难以生产的标签,并且对于小的分析物,可能会干扰正在研究的分子事件。分析物的大小在确定可检测性方面起着重要作用。在这里,我们在感测范围内使用激光频率锁定来提高微环形光学谐振器的信噪比,以使单个纳米粒子的半径为2.5 nm,并且在水溶液中检测到15.5 kDa的分子,从而使这些检测器成为现实。达到检测细胞关键大分子所需的大小限制。我们的研究结果涵盖了几个数量级的粒子半径(100 nm至2 nm),与“反应性”模型预测相一致,该模型预测了粒子结合后谐振器的频移。这证实了由于结合到吸附颗粒中的一部分field逝场,谐振器的频率偏移对颗粒结合的主要贡献是有效路径长度的增加。我们预期我们的结果将能实现许多应用,包括更敏感的医学诊断以及实时的单受体-配体和蛋白质-蛋白质相互作用的基础研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号