首页> 外文OA文献 >Deep Learning and Time-Series Analysis for the Early Detection of Lost Circulation Incidents During Drilling Operations
【2h】

Deep Learning and Time-Series Analysis for the Early Detection of Lost Circulation Incidents During Drilling Operations

机译:深度学习和时间序列分析,以便在钻井作业期间早期检测失去循环事件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drilling operations consist of breaking the rock to deepen a wellbore for oil or gas extraction. A drilling fluid, circulating from the surface through the drill pipe and from the annulus to the surface, is used to remove rock cuttings and maintain hydrostatic pressure. Drilling fluid lost circulation incidents (LCIs) are major sources of non-productive time (NPT) in drilling operations. These incidents occur due to preexisting natural fractures (vugs, caverns, etc.) and/or drilling-induced hydraulic fractures. The initiation of an LCI could lead to other hazardous drilling phenomena, such as formation influx or kick/blowout, stuck pipe incidents, among others. LCIs are typically monitored at the rig site by observing drilling fluid levels in the fluid tanks. This manual process incurs missing the occurrence or late detection of LCIs. Machine learning (ML) and deep learning (DL) classification algorithms are powerful in processing time-series data and achieving early detection of such temporal phenomena. In this study, we performed a large-scale analysis of the surface drilling and rheology data obtained from historical wells with LCIs. This analysis includes primary and secondary preprocessing steps including, aggressive sampling, feature engineering, and window normalization to derive generalizable DL models for real-time operations. Focal loss was utilized to account for data class imbalance and train robust and generalizable models. The results obtained from different ML/DL algorithms showed that one-dimensional convolutional neural network models resulted in the best performance with state-of-the-art precision, recall, and F1 scores of 87.34%, 73.40%, and 79.77%, respectively, on unseen test drilling data.
机译:钻井作业包括打破岩石加深井筒以进行油或气体提取。从表面循环通过钻管和从环到表面的钻孔流体,用于去除岩石切割并保持静压压力。钻井液丢失循环事件(LCIS)是钻井作业中非生产时间(NPT)的主要来源。这些事件由于预先存在的自然骨折(Vug,洞穴等)和/或钻孔诱导的液压骨折而发生。 LCI的启动可能导致其他危险钻井现象,例如形成涌入或踢/爆裂,陷入困境的管道事件等。通常通过观察流体罐中的钻井液水平来在钻机部位监测LCIS。本手册流程缺失缺少LCIS的发生或晚期检测。机器学习(ML)和深度学习(DL)分类算法在处理时间序列数据和实现此类时间现象的早期检测方面是强大的。在这项研究中,我们对LCIS的历史井获得的表面钻孔和流变数据进行了大规模分析。该分析包括主要和次级预处理步骤,包括激进采样,特征工程和窗口归一化,以导出用于实时操作的可通用DL模型。利用焦点损失来解释数据类不平衡和培训稳健且广泛的模型。从不同的ML / DL算法获得的结果表明,一维卷积神经网络模型分别具有最先进的精度,召回和87.34%,73.40%和79.77%的最佳性能。 ,在看不见的测试钻探数据上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号