首页> 外文OA文献 >Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study
【2h】

Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study

机译:通过机器学习方法预测听力损失患者的耳蜗死区:初步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a machine learning (ML)-based model for predicting cochlear dead regions (DRs) in patients with hearing loss of various etiologies. Five hundred and fifty-five ears from 380 patients (3,770 test samples) diagnosed with sensorineural hearing loss (SNHL) were analyzed. A threshold-equalizing noise (TEN) test was applied to detect the presence of DRs. Data were collected on sex, age, side of the affected ear, hearing loss etiology, word recognition scores (WRS), and pure-tone thresholds at each frequency. According to the cause of hearing loss as diagnosed by the physician, we categorized the patients into six groups: 1) SNHL with unknown etiology; 2) sudden sensorineural hearing loss (SSNHL); 3) vestibular schwannoma (VS); 4) Meniere's disease (MD); 5) noise-induced hearing loss (NIHL); or 6) presbycusis or age-related hearing loss (ARHL). To develop a predictive model, we performed recursive partitioning and regression for classification, logistic regression, and random forest. The overall prevalence of one or more DRs in test ears was 20.36% (113 ears). Among the 3,770 test samples, the overall frequency-specific prevalence of DR was 6.7%. WRS, pure-tone thresholds at each frequency, disease type (VS or MD), and frequency information were useful for predicting DRs. Sex and age were not associated with detecting DRs. Based on these results, we suggest possible predictive factors for determining the presence of DRs. To improve the predictive power of the model, a more flexible model or more clinical features, such as the duration of hearing loss or risk factors for developing DRs, may be needed.
机译:我们提出了一种机器学习(ML)基础模型,用于预测患者患者的患者的障碍丧失各种病因。分析了380名患者(3,770名试验样品)的五百五十五个耳朵被分析诊断出患有感觉神经听力损失(SNHL)。施加阈值均衡噪声(十)测试以检测DRS的存在。收集资料,对性别,年龄,患耳侧,在每个频率听力损失的病因,文字识别分数(WRS),以及纯音听阈。根据医生诊断的听力损失的原因,我们将患者分为六组:1)SNHL具有未知病因; 2)突然的感官听力损失(SSNHL); 3)前庭施瓦马诺瘤(VS); 4)Meniere的疾病(MD); 5)噪声引起的听力损失(NIHL);或6)预计与年龄相关的听力损失(ARHL)。要开发预测模型,我们对分类,逻辑回归和随机森林进行了递归分区和回归。测试耳朵中一个或多个DRS的总体患病率为20.36%(113耳)。在3,770个测试样品中,DR的总频率特异性普及率为6.7%。每个频率,疾病类型(VS或MD)的WRS,纯音阈值和频率信息对于预测DRS非常有用。性和年龄与检测博士无关。根据这些结果,我们建议确定博士的存在的可能预测因素。为了提高模型的预测力,可能需要更灵活的模型或更多临床特征,例如用于开发DRS的听力损失或风险因素的持续时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号