首页> 外文OA文献 >On the stopping distance and the stopping redundancy of codes
【2h】

On the stopping distance and the stopping redundancy of codes

机译:关于代码的停止距离和停止冗余

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is now well known that the performance of a linear code /spl Copf/ under iterative decoding on a binary erasure channel (and other channels) is determined by the size of the smallest stopping set in the Tanner graph for /spl Copf/. Several recent papers refer to this parameter as the stopping distance s of /spl Copf/. This is somewhat of a misnomer since the size of the smallest stopping set in the Tanner graph for /spl Copf/ depends on the corresponding choice of a parity-check matrix. It is easy to see that s /spl les/ d, where d is the minimum Hamming distance of /spl Copf/, and we show that it is always possible to choose a parity-check matrix for /spl Copf/ (with sufficiently many dependent rows) such that s=d. We thus introduce a new parameter, the stopping redundancy of /spl Copf/, defined as the minimum number of rows in a parity- check matrix H for /spl Copf/ such that the corresponding stopping distance s(H) attains its largest possible value, namely, s(H)=d. We then derive general bounds on the stopping redundancy of linear codes. We also examine several simple ways of constructing codes from other codes, and study the effect of these constructions on the stopping redundancy. Specifically, for the family of binary Reed-Muller codes (of all orders), we prove that their stopping redundancy is at most a constant times their conventional redundancy. We show that the stopping redundancies of the binary and ternary extended Golay codes are at most 34 and 22, respectively. Finally, we provide upper and lower bounds on the stopping redundancy of MDS codes.
机译:现在众所周知,线性编码/ spl Copf /在二进制擦除信道(和其他信道)上的迭代解码下的性能取决于/ spl Copf /的Tanner图中最小停止集的大小。最近的几篇论文将此参数称为/ spl Copf /的停止距离s​​。这有点用词不当,因为/ spl Copf /的Tanner图中最小停止集的大小取决于奇偶校验矩阵的相应选择。很容易看到s / spl les / d,其中d是/ spl Copf /的最小汉明距离,并且我们证明了总是有可能为/ spl Copf /选择奇偶校验矩阵(具有足够多的相关行),以使s = d。因此,我们引入了一个新参数,即/ spl Copf /的停止冗余,定义为/ spl Copf /的奇偶校验矩阵H中的最小行数,以使相应的停止距离s​​(H)达到其最大可能值。即,s(H)= d。然后,我们得出线性码停止冗余的一般界限。我们还研究了从其他代码构造代码的几种简单方法,并研究了这些构造对停止冗余的影响。具体而言,对于(所有阶数的)二进制Reed-Muller码家族,我们证明了它们的停止冗余度最多是其常规冗余度的常数倍。我们显示二进制和三进制扩展的Golay码的停止冗余分别最多为34和22。最后,我们提供了MDS代码停止冗余的上限和下限。

著录项

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号