首页> 外文OA文献 >An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building
【2h】

An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced-Concrete Moment-Frame Building

机译:评估符合规范的钢筋混凝土矩型框架建筑的抗震性能的评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This report describes a state-of-the-art performance-based earthquake engineering methodology udthat is used to assess the seismic performance of a four-story reinforced concrete (RC) office udbuilding that is generally representative of low-rise office buildings constructed in highly seismic udregions of California. This “benchmark” building is considered to be located at a site in the Los udAngeles basin, and it was designed with a ductile RC special moment-resisting frame as its udseismic lateral system that was designed according to modern building codes and standards. The udbuilding’s performance is quantified in terms of structural behavior up to collapse, structural and udnonstructural damage and associated repair costs, and the risk of fatalities and their associated udeconomic costs. To account for different building configurations that may be designed in udpractice to meet requirements of building size and use, eight structural design alternatives are udused in the performance assessments. udOur performance assessments account for important sources of uncertainty in the ground udmotion hazard, the structural response, structural and nonstructural damage, repair costs, and udlife-safety risk. The ground motion hazard characterization employs a site-specific probabilistic udseismic hazard analysis and the evaluation of controlling seismic sources (through uddisaggregation) at seven ground motion levels (encompassing return periods ranging from 7 to ud2475 years). Innovative procedures for ground motion selection and scaling are used to develop udacceleration time history suites corresponding to each of the seven ground motion levels. udStructural modeling utilizes both “fiber” models and “plastic hinge” models. Structural udmodeling uncertainties are investigated through comparison of these two modeling approaches, udand through variations in structural component modeling parameters (stiffness, deformation udcapacity, degradation, etc.). Structural and nonstructural damage (fragility) models are based on uda combination of test data, observations from post-earthquake reconnaissance, and expert udopinion. Structural damage and repair costs are modeled for the RC beams, columns, and slabcolumn connections. Damage and associated repair costs are considered for some nonstructural udbuilding components, including wallboard partitions, interior paint, exterior glazing, ceilings, udsprinkler systems, and elevators. The risk of casualties and the associated economic costs are udevaluated based on the risk of structural collapse, combined with recent models on earthquake udfatalities in collapsed buildings and accepted economic modeling guidelines for the value of udhuman life in loss and cost-benefit studies. udThe principal results of this work pertain to the building collapse risk, damage and repair udcost, and life-safety risk. These are discussed successively as follows. udWhen accounting for uncertainties in structural modeling and record-to-record variability ud(i.e., conditional on a specified ground shaking intensity), the structural collapse probabilities of udthe various designs range from 2% to 7% for earthquake ground motions that have a 2% udprobability of exceedance in 50 years (2475 years return period). When integrated with the udground motion hazard for the southern California site, the collapse probabilities result in mean udannual frequencies of collapse in the range of [0.4 to 1.4]x10ud-4ud for the various benchmark udbuilding designs. In the development of these results, we made the following observations that udare expected to be broadly applicable: ud(1) The ground motions selected for performance simulations must consider spectral udshape (e.g., through use of the epsilon parameter) and should appropriately account for udcorrelations between motions in both horizontal directions; ud(2) Lower-bound component models, which are commonly used in performance-based udassessment procedures such as FEMA 356, can significantly bias collapse analysis results; it is udmore appropriate to use median component behavior, including all aspects of the component udmodel (strength, stiffness, deformation capacity, cyclic deterioration, etc.); ud(3) Structural modeling uncertainties related to component deformation capacity and udpost-peak degrading stiffness can impact the variability of calculated collapse probabilities and udmean annual rates to a similar degree as record-to-record variability of ground motions. udTherefore, including the effects of such structural modeling uncertainties significantly increases udthe mean annual collapse rates. We found this increase to be roughly four to eight times relative udto rates evaluated for the median structural model; ud(4) Nonlinear response analyses revealed at least six distinct collapse mechanisms, the udmost common of which was a story mechanism in the third story (differing from the multi-story udmechanism predicted by nonlinear static pushover analysis); ud(5) Soil-foundation-structure interaction effects did not significantly affect the structural udresponse, which was expected given the relatively flexible superstructure and stiff soils. udThe potential for financial loss is considerable. Overall, the calculated expected annual udlosses (EAL) are in the range of $52,000 to $97,000 for the various code-conforming benchmark udbuilding designs, or roughly 1% of the replacement cost of the building ($8.8M). These losses udare dominated by the expected repair costs of the wallboard partitions (including interior paint) and by the structural members. Loss estimates are sensitive to details of the structural models, udespecially the initial stiffness of the structural elements. Losses are also found to be sensitive to udstructural modeling choices, such as ignoring the tensile strength of the concrete (40% change in udEAL) or the contribution of the gravity frames to overall building stiffness and strength (15% udchange in EAL). udAlthough there are a number of factors identified in the literature as likely to affect the udrisk of human injury during seismic events, the casualty modeling in this study focuses on those udfactors (building collapse, building occupancy, and spatial location of building occupants) that uddirectly inform the building design process. The expected annual number of fatalities is udcalculated for the benchmark building, assuming that an earthquake can occur at any time of any udday with equal probability and using fatality probabilities conditioned on structural collapse and udbased on empirical data. The expected annual number of fatalities for the code-conforming udbuildings ranges between 0.05*10ud-2ud and 0.21*10ud-2ud, and is equal to 2.30*10ud-2ud for a non-code udconforming design. The expected loss of life during a seismic event is perhaps the decision udvariable that owners and policy makers will be most interested in mitigating. The fatality udestimation carried out for the benchmark building provides a methodology for comparing this udimportant value for various building designs, and enables informed decision making during the uddesign process. udThe expected annual loss associated with fatalities caused by building earthquake damage udis estimated by converting the expected annual number of fatalities into economic terms. udAssuming the value of a human life is $3.5M, the fatality rate translates to an EAL due to udfatalities of $3,500 to $5,600 for the code-conforming designs, and $79,800 for the non-code udconforming design. Compared to the EAL due to repair costs of the code-conforming designs, udwhich are on the order of $66,000, the monetary value associated with life loss is small, udsuggesting that the governing factor in this respect will be the maximum permissible life-safety udrisk deemed by the public (or its representative government) to be appropriate for buildings. udAlthough the focus of this report is on one specific building, it can be used as a reference udfor other types of structures. This report is organized in such a way that the individual core udchapters (4, 5, and 6) can be read independently. Chapter 1 provides background on the udperformance-based earthquake engineering (PBEE) approach. Chapter 2 presents the udimplementation of the PBEE methodology of the PEER framework, as applied to the benchmark udbuilding. Chapter 3 sets the stage for the choices of location and basic structural design. The subsequent core chapters focus on the hazard analysis (Chapter 4), the structural analysis ud(Chapter 5), and the damage and loss analyses (Chapter 6). Although the report is self-contained, udreaders interested in additional details can find them in the appendices.
机译:本报告介绍了一种基于性能的最新地震工程方法 ud,该方法用于评估四层钢筋混凝土(RC)办公室 udbuilding的地震性能,该建筑物通常代表已建造的低层办公建筑在加利福尼亚的地震烈性地区。这座“基准”建筑被认为位于洛斯 udAngeles盆地的某个地点,并且根据延展的RC特殊抗弯框架设计为 udismism侧向系统,并根据现代建筑规范和标准进行了设计。建筑的性能可以通过以下方面进行量化:直至崩溃的结构行为,结构和非结构性损坏以及相关的维修费用,以及死亡风险和相关的经济损失。为了说明可以按照惯例设计以满足建筑物大小和用途要求的不同建筑物配置,在性能评估中使用了八种结构设计替代方案。 ud我们的性能评估是造成地面不确定性的重要原因,包括运动危害,结构响应,结构和非结构性损坏,维修成本以及生命安全风险。地面运动危害特征分析采用了针对特定地点的概率 udismismic危害分析,并评估了七个地面运动水平(包括从7到 ud2475年的返回期)的控制震源(通过 uddisaggregation)。用于地面运动选择和缩放的创新过程用于开发与七个地面运动级别中的每个相对应的 udacceleration时间历史套件。 ud结构建模同时使用“纤维”模型和“塑料铰链”模型。通过比较这两种建模方法,通过结构组件建模参数(刚度,变形承载能力,退化等)的变化来研究结构建模不确定性。结构性和非结构性损坏(脆弱性)模型基于测试数据,,,,,,,,“ ”,“小齿轮”。针对钢筋混凝土梁,柱和平板柱连接建模了结构破坏和维修成本。对于某些非结构性 udbuilding组件,包括墙板隔板,内部油漆,外墙玻璃,天花板, udsprinkler系统和电梯,考虑了损坏和相关的维修费用。根据结构倒塌的风险,结合近期的地震倒塌模型倒塌建筑物的毁坏率,以及公认的经济建模准则,对人员伤亡风险和相关的经济成本进行了评估,以评估损失和成本-收益研究中的“人类生命”价值。 。这项工作的主要结果涉及建筑物倒塌风险,损坏和维修成本,以及生命安全风险。这些依次讨论如下。 ud考虑结构建模和记录间变化的不确定性(即以指定的地面震动强度为条件)时,对于地震地面运动,各种设计的结构倒塌概率范围为2%至7%。在50年内(超过2475年的回报期)有超过2%的可能性。当与南加州工地的地面运动危害综合在一起时,对于各种基准 udbuilding设计,坍塌概率会导致平均 udannual倒塌频率在[0.4到1.4] x10 ud-4 ud范围内。在这些结果的开发中,我们做出了以下观察,认为 uda有望广泛适用: ud(1)为性能模拟选择的地面运动必须考虑频谱 udshape(例如,通过使用epsilon参数),并且应该适当考虑两个水平方向上的运动之间的不相关性; ud(2)在基于性能的 udassess评估程序(例如FEMA 356)中通常使用的下界组​​件模型可能会严重破坏崩溃分析结果; ud更适合使用中值部件行为,包括部件 udmodel的所有方面(强度,刚度,变形能力,循环劣化等); ud(3)与零件变形能力和峰后降解刚度有关的结构建模不确定性可能会影响计算的倒塌概率和年均速率的变化,其程度与地震动的记录到记录的变化相似。因此,包括这种结构模型不确定性的影响会大大增加平均年崩溃率。我们发现,对于中位数结构模型,这种增加是相对 udto率的大约四到八倍; ud(4)非线性响应分析揭示了至少六个不同的坍塌机制,其中最常见的是第三个故事中的故事机制(与非线性静态下推分析所预测的多层故事机制不同); ud(5)土-基础-结构的相互作用没有显着影响结构的响应,这是考虑到相对灵活的上部结构和坚硬的土壤所预期的。 ud潜在的财务损失是巨大的。总体而言,对于各种符合规范的基准 udbuilding设计,预计的年度 udloss(EAL)的计算范围在$ 52,000到$ 97,000之间,约占建筑物重置成本的1%($ 880万)。这些损失主要由墙板隔断(包括内墙涂料)和结构构件的预期维修成本决定。损耗估计值对结构模型的细节敏感,尤其是结构元素的初始刚度。还发现损耗对结构模型选择很敏感,例如忽略混凝土的抗拉强度(udEAL变化40%)或重力框架对整体建筑刚度和强度的贡献(EAL下降15%) )。尽管在文献中确定了许多因素可能会影响地震事件中人身伤害的风险,但本研究中的人员伤亡建模着重于那些因素(建筑物倒塌,建筑物占用和建筑物占用者的空间位置) ),从而直接告知建筑设计过程。假设基准年建筑物的预期年死亡人数是 ud计算的,假定地震可以在任何 udday的任何时间以相同的概率发生,并且使用基于结构性崩溃和 ud经验数据的死亡概率。符合代码的 udbuildings的预期每年死亡人数在0.05 * 10 ud-2 ud和0.21 * 10 ud-2 ud之间,对于a等于2.30 * 10 ud-2 ud非代码 udconforming设计。地震事件中预期的生命损失也许是业主和决策者最有兴趣缓解的决定。为基准建筑物进行的致命性评估提供了一种方法,可以比较各种建筑设计的重要价值,并在明智的设计过程中做出明智的决策。 ud通过建筑物地震破坏造成的死亡人数造成的预期年度损失 udis通过将预期的年度死亡人数转换为经济术语来估算。假设一条人的生命价值为350万美元,那么由于代码一致性设计的3500美元到5600美元的非寿险,以及非代码 udconforming设计的79,800美元的寿险,致死率转化为EAL。与因符合代码设计的维修成本而导致的EAL相比(大约为6.6万美元),与生命损失相关的货币价值很小,这建议这方面的控制因素将是最大允许寿命-公众(或其代表政府)认为适用于建筑物的安全 udryk。 ud尽管本报告的重点是在一栋特定的建筑物上,但它可以用作其他类型结构的参考 ud。该报告的组织方式使得可以独立读取各个核心(第4、5和6章)。第1章提供了基于 udperformance的地震工程(PBEE)方法的背景知识。第2章介绍了适用于基准 udbuilding的PEER框架PBEE方法的实现。第3章为选择位置和基础结构设计奠定了基础。随后的核心章节集中于危害分析(第4章),结构分析 ud(第5章)以及损害和损失分析(第6章)。尽管该报告是独立的,但对其他详细信息感兴趣的 udreader可以在附录中找到它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号