首页> 外文OA文献 >Bayesian Optimization for Fitting 3D Morphable Models of Brain Structures
【2h】

Bayesian Optimization for Fitting 3D Morphable Models of Brain Structures

机译:贝叶斯优化拟合3D可线性脑结构模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Localize target areas in deep brain stimulation is a difficult task, due to the shape variability that brain structures exhibit between patients. The main problem in this process is that the fitting procedure is carried out by a registration method that lacks of accuracy. In this paper we proposed a novel method for 3D brain structure fitting based on Bayesian optimization. We use a morphable model in order to capture the shape variability in a given set of brain structures. Then from the trained model, we perform a Bayesian optimization task with the aim to find the best shape parameters that deform the trained model, and fits accurately to a given brain structure. The experimental results show that by using an optimization framework based on Bayesian optimization, the model performs an accurate fitting over cortical brain structures (thalamus, amygdala and ventricle) in comparison with common fitting methods, such as iterative closest point.
机译:在深部脑刺激中定位目标区域是一项艰巨的任务,这是由于患者之间大脑结构的形状可变性所致。该过程中的主要问题是,拟合过程是通过缺乏准确性的套准方法来执行的。在本文中,我们提出了一种基于贝叶斯优化的3D脑结构拟合新方法。我们使用可变形模型来捕获给定一组大脑结构中的形状变异性。然后,从经过训练的模型中执行贝叶斯优化任务,目的是找到使经过训练的模型变形的最佳形状参数,并使其准确地适合给定的大脑结构。实验结果表明,通过使用基于贝叶斯优化的优化框架,与常见的拟合方法(例如迭代最近点)相比,该模型对皮质脑结构(丘脑,杏仁核和心室)进行了精确拟合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号