首页> 外文OA文献 >A location-constrained crowdsensing task allocation method for improving user satisfaction
【2h】

A location-constrained crowdsensing task allocation method for improving user satisfaction

机译:一种改进用户满意度的位置约束众脉任务分配方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile crowdsensing is a special data collection manner which collects data by smart phones taken by people every day. It is essential to pick suitable workers for different outdoor tasks. Constrained by participants’ locations and their daily travel rules, they are likely to accomplish light outdoor tasks by their way without extra detours. Previous researchers found that people prefer to accomplish a certain number of tasks at a time; thus, we focus on assigning light outdoor tasks to workers by considering two optimization objectives, including (1) maximizing the ratio of light tasks for different workers and (2) maximizing the worker’s satisfaction on assigned tasks. This task allocation problem is a non-deterministic polynomial-time-hard due to two reasons, that is, tasks and workers are many-to-many relationships and workers move from different places to different places. Considering both optimization objectives, we design the global-optimizing task allocation algorithm, which greedily selects the most appropriate participant until either no participant can be chosen or no tasks can be assigned. For the purpose of emulating real scenarios, different scales of maps, tasks, and workers are simulated to evaluate algorithms. Experimental results verify that the proposed global-optimizing method outperforms baselines on both maximization objectives.
机译:移动crowdsensing是一个特殊的数据收集方式,其通过每天采取人的智能手机收集数据。它挑选合适的工人不同的户外任务是必不可少的。通过参与者的位置和他们的日常出行的规则约束,他们可能会通过完成他们的方式轻户外任务,而无需额外的弯路。以前的研究人员发现,人们更愿意完成一定数目的同时任务的;因此,我们重点考虑两种优化目标,包括:(1)光分配任务的户外工人最大化的光任务不同的工人和(2)分配任务最大限度地提高工人的满意率。这个任务分配问题是一个非确定多项式时间难有两个原因,那就是,任务和工作人员有许多一对多的关系,工作人员来自不同地方移动到不同的地方。同时考虑优化目标,我们设计的全球优化的任务分配算法,贪婪地选择最合适的参与者,直到没有任何参与者都可以选择或没有任务可以被分配。为了模拟真实场景的目的,地图,任务和工作人员的不同尺度模拟评估算法。实验结果证明,所提出的全局优化方法优于上实现最大化目标的基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号