首页> 外文OA文献 >Statistical Design of Experimental and Bootstrap Neural Network Modelling Approach for Thermoseparating Aqueous Two-Phase Extraction of Polyhydroxyalkanoates
【2h】

Statistical Design of Experimental and Bootstrap Neural Network Modelling Approach for Thermoseparating Aqueous Two-Phase Extraction of Polyhydroxyalkanoates

机译:热磷酸盐水性两相萃取水性双相萃取的实验和自动启动神经网络建模方法的统计设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At present, polyhydroxyalkanoates (PHAs) have been considered as a promising alternative to conventional plastics due to their diverse variability in structure and rapid biodegradation. To ensure cost competitiveness in the market, thermoseparating aqueous two-phase extraction (ATPE) with the advantages of being mild and environmental-friendly was suggested as the primary isolation and purification tool for PHAs. Utilizing two-level full factorial design, this work studied the influence and interaction between four independent variables on the partitioning behavior of PHAs. Based on the experimental results, feed forward neural network (FFNN) was used to develop an empirical model of PHAs based on the ATPE thermoseparating input-output parameter. In this case, bootstrap resampling technique was used to generate more data. At the conditions of 15 wt % phosphate salt, 18 wt % ethylene oxide–propylene oxide (EOPO), and pH 10 without the addition of NaCl, the purification and recovery of PHAs achieved a highest yield of 93.9%. Overall, the statistical analysis demonstrated that the phosphate concentration and thermoseparating polymer concentration were the most significant parameters due to their individual influence and synergistic interaction between them on all the response variables. The final results of the FFNN model showed the ability of the model to seamlessly generalize the relationship between the input–output of the process.
机译:目前,由于其结构的不同变异性和快速生物降解,多羟基烷烃(PHA)被认为是传统塑料的有希望的替代品。为了确保市场上的成本竞争力,有利于温和和环境友好的优点的热循环水性两相萃取(ATPE)作为PHA的主要隔离和纯化工具。利用两级全部造成设计,这项工作研究了四个独立变量对PHA分区行为之间的影响和交互。基于实验结果,基于ATPE热循环输入输出参数,使用馈送前向神经网络(FFNN)来开发PHA的经验模型。在这种情况下,使用Bootstrap重采样技术用于生成更多数据。在15wt%磷酸盐的条件下,18wt%环氧乙烷 - 环氧丙烷(EOPO)和PH10,没有添加NaCl,纯化和回收率达到93.9%的最高收率。总体而言,统计分析表明,由于它们在所有响应变量之间的各个影响和协同相互作用,磷酸浓度和热循粒聚合物浓度是最重要的参数。 FFNN模型的最终结果表明了模型无缝地概括了该过程的输入输出之间的关系的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号