首页> 外文OA文献 >Performance of Partial and Cavity Type Squealer Tip of a HP Turbine Blade in a Linear Cascade
【2h】

Performance of Partial and Cavity Type Squealer Tip of a HP Turbine Blade in a Linear Cascade

机译:线性级联中HP涡轮叶片的局部和腔型耳钉尖端的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional highly complex flow structure in tip gap between blade tip and casing leads to inefficient turbine performance due to aerothermal loss. Interaction between leakage vortex and secondary flow structures is the substantial source of that loss. Different types of squealer tip geometries were tried in the past, in order to improve turbine efficiency. The current research deals with comparison of partial and cavity type squealer tip concepts for higher aerothermal performance. Effects of squealer tip have been examined comprehensively for an unshrouded HP turbine blade tip geometry in a linear cascade. In the present paper, flow structure through the tip gap was comprehensively investigated by computational fluid dynamic (CFD) methods. Numerical calculations were obtained by solving three-dimensional, incompressible, steady, and turbulent form of the Reynolds-averaged Navier-Stokes (RANS) equations using a general purpose and three-dimensional viscous flow solver. The two-equation turbulence model, shear stress transport (SST), has been used. The tip profile belonging to the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF) was used to create an extruded solid model of the axial turbine blade. For identifying optimal dimensions of squealer rim in terms of squealer height and squealer width, our previous studies about aerothermal investigation of cavity type squealer tip were utilized. In order to obtain the mesh, an effective parametric generation has been utilized using a multizone structured mesh. Numerical calculations indicate that partial and cavity squealer designs can be effective to reduce the aerodynamic loss and heat transfer to the blade tip. Future efforts will include novel squealer shapes for higher aerothermal performance.
机译:叶片尖端和壳体之间的尖端间隙中的三维高度复杂的流动结构导致由于空气损失导致的涡轮性能低。泄漏涡流与二次流动结构之间的相互作用是该损失的实质性来源。过去尝试了不同类型的尖端几何形状,以提高涡轮效率。目前的研究涉及部分和腔式耳器尖端概念的比较,以获得更高的空气性能。已经综合地对线性级联中的非崇拜的HP涡轮叶片尖端几何进行了综合检查了尖端尖端的影响。在本文中,通过计算流体动态(CFD)方法全面地研究了通过尖端间隙的流动结构。通过使用通用和三维粘性流动求解来求解雷诺平均的Navier-Stokes(RAN)方程的三维,不可压缩,稳定和湍流的湍流来获得数值计算。已经使用了双等式湍流模型,剪切应力传输(SST)。属于宾夕法尼亚州立大学轴流涡轮机研究设施(AFTRF)的尖端轮廓用于制造轴向涡轮机叶片的挤出固体模型。为了识别耳骨高度和耳骨宽度方面的耳器边缘的最佳尺寸,利用了我们对腔耳尖端尖端尖端的空气热调查的先前研究。为了获得网状物,使用多个子结构化网格利用了有效的参数。数值计算表明部分和腔耳器设计可以有效地降低空气动力学损耗和传热到叶片尖端。未来的努力将包括新型尖叫者形状,用于较高的空气性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号