首页> 外文OA文献 >Constrained methods for Neural Networks and Computer Graphics
【2h】

Constrained methods for Neural Networks and Computer Graphics

机译:神经网络和计算机图形学的约束方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Both computer graphics and neural networks are related, in that they model natural phenomena. Physically-based models are used by computer graphics researchers to create realistic, natural animation, and neural models are used by neural network researchers to create new algorithms or new circuits. To exploit successfully these graphical and neural models, engineers want models that fulfill designer-specified goals. These goals are converted into mathematical constraints. This thesis presents constraint methods for computer graphics and neural networks. The mathematical constraint methods modify the differential equations that govern the neural or physically-based models. The constraints methods gradually enforce the constraints exactly. This thesis also describes applications of constrained models to real problems. The first half of this thesis discusses constrained neural networks. The desired models and goals are often converted into constrained optimization problems. These optimization problems are solved using first-orderdifferential equations. There are a series of constraint methods which are applicable to optimization using differential equations: the Penalty Method adds extra terms to the optimization function which penalize violations of constraints, the Differential Multiplier Method adds subsidiary differential equations which estimate Lagrange multipliers to fulfill the constraints gradually and exactly, Rate-Controlled Constraints compute extra terms for the differential equation that force the system to fulfill the constraints exponentially. The applications of constrained neural networks include the creation of constrained circuits, error-correcting codes, symmetric edge detection for computer vision, and heuristics for the traveling salesman problem. The second half of this thesis discusses constrained computer graphics models. In computer graphics, the desired models and goals become constrained mechanical systems, which are typically simulated with second-order differential equations. The Penalty Method adds springs to the mechanical system to penalize violations of the constraints. Rate-Controlled Constraints add forces and impulses to the mechanical system to fulfill the constraints with critically damped motion. Constrained computer graphics models can be used to make deformable physically-based models follow the directives of a animator.
机译:计算机图形学和神经网络都是相关的,因为它们可以对自然现象进行建模。计算机图形学研究人员使用基于物理的模型来创建逼真的自然动画,而神经网络研究人员则使用神经模型来创建新算法或新电路。为了成功利用这些图形和神经模型,工程师希望模型能够满足设计人员指定的目标。这些目标被转换为数学约束。本文提出了计算机图形学和神经网络的约束方法。数学约束方法修改了控制神经或基于物理的模型的微分方程。约束方法逐渐精确地实施约束。本文还描述了约束模型在实际问题中的应用。本文的上半部分讨论了约束神经网络。所需的模型和目标通常会转换为约束优化问题。使用一阶微分方程可以解决这些优化问题。有一系列适用于使用微分方程进行优化的约束方法:“罚分法”向优化函数添加了额外的项,以惩罚违反约束的情况;“微分乘数”方法添加了辅助微分方程,这些子方程可估计拉格朗日乘数以逐步满足约束。确切地讲,速率控制约束为微分方程计算了额外的项,迫使系统按指数方式满足约束。约束神经网络的应用包括约束电路的创建,纠错代码,用于计算机视觉的对称边缘检测以及用于旅行商问题的启发式方法。本文的后半部分讨论了约束计算机图形模型。在计算机图形学中,所需的模型和目标成为受约束的机械系统,通常使用二阶微分方程进行模拟。罚分法将弹簧添加到机械系统中,以惩罚违反约束的情况。速率控制约束为机械系统增加了力和脉冲,以通过临界阻尼运动来满足约束。受约束的计算机图形模型可用于使可变形的基于物理的模型遵循动画师的指令。

著录项

  • 作者

    Platt John;

  • 作者单位
  • 年度 1989
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号