首页> 外文OA文献 >Trajectory analysis for non-Brownian inertial suspensions in simple shear flow
【2h】

Trajectory analysis for non-Brownian inertial suspensions in simple shear flow

机译:简单剪切流中非布朗惯性悬架的轨迹分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We analyse pair trajectories of equal-sized spherical particles in simple shear flow for small but finite Stokes numbers. The Stokes number, $mbox{extit{St}} ,{=}, dot{gamma} au_p$, is a dimensionless measure of particle inertia; here, $au_p$ is the inertial relaxation time of an individual particle and $dot{gamma}$ is the shear rate. In the limit of weak particle inertia, a regular small-$mbox{extit{St}}$ expansion of the particle velocity is used in the equations of motion to obtain trajectory equations to the desired order in $mbox{extit{St}}$. The equations for relative trajectories are then solved, to $O(mbox{extit{St}})$, in the dilute limit, including only pairwise interactions. Particle inertia is found to destroy the fore–aft symmetry of the zero-Stokes trajectories, and finite-$mbox{extit{St}}$ open trajectories suffer net transverse displacements in the velocity gradient and vorticity directions. The vorticity displacement remains $O(mbox{extit{St}})$, while the scaling of the gradient displacement increases from $O(mbox{extit{St}})$ for far-field open trajectories, to $O(mbox{extit{St}}^{{1}/{2}})$ for open trajectories with $O(mbox{extit{St}}^{{1}/{2}})$ upstream gradient offsets. The gradient displacement also changes sign, being negative close to the plane of the reference sphere (the shearing plane) on account of dominant lubrication interactions, and then becoming positive at larger off-plane separations. The transverse displacements accompanying successive pair interactions lead to a diffusive behaviour for long times. The shear-induced diffusivity in the vorticity direction is $O(mbox{extit{St}}^2phi dot{gamma} a^2)$, while that in the gradient direction scales as $O(mbox{extit{St}}^2 ln mbox{extit{St}},phi dot{gamma} a^2)$ and $O(mbox{extit{St}}^2 phi ln (1/phi) dot{gamma} a^2)$ in the limits $phi ,{ll}, mbox{extit{St}}^{{1}/{3}}$ and $mbox{extit{St}}^{{1}/{3}} ,{ll}, phi ,{ll}, 1$, respectively. Further, the region of zero-Stokes closed trajectories is destroyed, and there exists a new attracting limit cycle whose location in the shearing plane is, at leading order, independent of $mbox{extit{St}}$. The extension of the present analysis to include a generic linear flow, and the implications of the finite-$mbox{extit{St}}$ trajectory modifications for coagulating systems are discussed.
机译:对于较小但有限的斯托克斯数,我们分析了简单剪切流中大小相等的球形颗粒的配对轨迹。斯托克斯数$ mbox { textit {St}} ,{=} dot { gamma} tau_p $是粒子惯性的无量纲度量;这里,$ tau_p $是单个粒子的惯性弛豫时间,$ dot { gamma} $是剪切速率。在弱粒子惯性的极限下,在运动方程中使用粒子速度的常规小 mbox { textit {St}} $扩展,以在$ mbox { textit中获得所需顺序的轨迹方程{St}} $。然后在仅包括成对相互作用的稀疏极限中将相对轨迹的方程求解为$ O( mbox { textit {St}})$。发现粒子惯性破坏了零斯托克斯轨迹的前后对称性,而有限的$ mbox { textit {St}} $开放轨迹在速度梯度和涡度方向上遭受净横向位移。涡度位移保持为$ O( mbox { textit {St}})$,而梯度位移的缩放​​比例从远场开放轨迹的$ O( mbox { textit {St}})$增加到$ O( mbox { textit {St}} ^ {{1} / {2}})$用于带有$ O( mbox { textit {St}} ^ {{1} / {2}}的开放轨迹)$上游渐变偏移量。梯度位移也会改变符号,由于主要的润滑相互作用,其在参考球的平面(剪切平面)附近为负,然后在较大的离平面间距处变为正。伴随连续对相互作用的横向位移导致长时间的扩散行为。剪切诱导的在涡度方向上的扩散率为$ O( mbox { textit {St}} ^ 2 phi dot { gamma} a ^ 2)$,而在梯度方向上的剪切扩散度则为$ O( mbox { textit {St}} ^ 2 ln mbox { textit {St}} , phi dot { gamma} a ^ 2)$和$ O( mbox { textit {St}} ^ 2 phi ln(1 / phi) dot { gamma} a ^ 2)$在限制$ phi ,{ ll} , mbox { textit {St}} ^ {{1} / {3}} $和$ mbox { textit {St}} ^ {{1} / {3}} ,{ ll} , phi ,{ ll} ,1 $。此外,零斯托克斯闭合轨迹的区域被破坏,并且存在一个新的吸引极限环,其在剪切平面中的位置按领先顺序独立于$ mbox { textit {St}} $。本分析的扩展以包括通用线性流,并讨论了有限元轨迹对凝固系统的影响。

著录项

  • 作者

    Subramanian G.; Brady John F.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号