首页> 外文OA文献 >Spectral analysis of the anisotropic neutron transport kernel in slab geometry with applicationsud
【2h】

Spectral analysis of the anisotropic neutron transport kernel in slab geometry with applicationsud

机译:平板几何中各向异性中子传输核的光谱分析及其应用 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A spectral analysis of the transport kernel for anisotropic scattering in finite slabs is achieved by first solving a type of generalized scattering problem for a subcritical slab. Initially, the scattering problem is stated as an inhomogeneous integral transport equation with a complex-valued source function. This is readily transformed to singular integral equations and linear constraints in which the space and angle variables enter as parameters. Dual singular equations appear in applications of Case's method to transport problems, but we cannot yet completely explain this duality. The singular equations are transformed to Fredholm equations by an extension of Muskhelishvili's standard method and by analytic continuation. It is shown that, for a wide class of scattering functions, this particular Fredholm reduction yields equations which converge rapidly under iteration for all neutron productions and slab thicknesses. The ultimate solution of the singular equations contains arbitrary constants which, when evaluated by the aforementioned linear constraints, display explicitly the Fredholm determinant and the eigenfunctions of the transport kernel. An immediate consequence of this result is the criticality condition and the associated neutron distribution. Specific applications to linear anisotropic and isotropic scattering in slab geometry are discussed. In addition, it is seen that the case of isotropic scattering in spheres can be treated with this method, and, in fact, the spectral analysis of the kernel for the slab problem immediately applies to the sphere kernel.
机译:通过首先解决亚临界平板的一类广义散射问题,可以对有限平板中各向异性散射的传输核进行光谱分析。最初,散射问题被描述为具有复数值源函数的不均匀积分输运方程。这很容易转换为奇异积分方程和线性约束,其中空间和角度变量作为参数输入。对偶奇异方程出现在Case方法的运输问题中,但我们尚不能完全解释这种对偶性。通过扩展Muskhelishvili标准方法并通过解析连续将奇异方程转换为Fredholm方程。结果表明,对于一类广泛的散射函数,这种特殊的Fredholm折减法产生的方程在迭代过程中对于所有中子产生量和平板厚度都迅速收敛。奇异方程组的最终解包含任意常数,当通过上述线性约束求值时,这些常数会明确显示Fredholm行列式和传输核的本征函数。该结果的直接后果是临界条件和相关的中子分布。讨论了平板几何中线性各向异性和各向同性散射的具体应用。另外,可以看出,用这种方法可以处理球体各向同性散射的情况,实际上,针对平板问题的核的光谱分析立即适用于球核。

著录项

  • 作者

    Leonard A.; Mullikin T. W.;

  • 作者单位
  • 年度 1964
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号