首页> 外文OA文献 >A Highly Accurate Regular Domain Collocation Method for Solving Potential Problems in the Irregular Doubly Connected Domains
【2h】

A Highly Accurate Regular Domain Collocation Method for Solving Potential Problems in the Irregular Doubly Connected Domains

机译:一种高度准确的常规域搭配方法,用于解决不规则双连接域中的潜在问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
机译:将不规则的双连接域嵌入环形常规区域,未知函数可以通过常规区域中的重心拉格朗日插值来近似。提出了一种高精度的常规域共界方法,用于解决极性坐标系中的不规则双连接域上的潜在问题。通过在极性坐标系中使用常规域上的重心拉格朗日插值搭配方法来构造常规域搭配方法的制剂。边界条件通过常规域内的重心拉长插值离散化。另外的方法用于施加边界条件。最小二乘法可用于解决过度共度方程。不规则双连接域中的点的函数值可以通过常规域内的重心拉格朗日插值来计算。一些数值示例证明了所提出的方法的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号