首页> 外文OA文献 >A Discussion of the Application of the Prandtl-Glauert Method to Subsonic Compressible Flow over a Slender Body of Revolution
【2h】

A Discussion of the Application of the Prandtl-Glauert Method to Subsonic Compressible Flow over a Slender Body of Revolution

机译:关于Prandtl-Glauert方法在细长旋转体上亚音速可压缩流中的应用的讨论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The Prandtl-Glauert method for subsonic potential flow of a compressible fluid has generally been believed to lead to an increase in the pressures over a slender body of revolution by a factor 1/([sqrt](1-M[sub]1^2)) (where M[sub]1 is Mach number in undisturbed flow) as compared with the pressures in incompressible flow. Recent German work on this problem has indicated, however, that the factor 1/([sqrt](1-M[sub]1^2)) is not applicable in this case. In the present discussion a more careful application of theudPrandtl-Glauert method to three-dimensional flow gives the following results: ududThe Prandtl-Glauert method does not lead to a universal velocity or pressure correction formula that is independent of the shape of the body. The factor 1/([sqrt](1-M[sub]1^2)) is applicable only to the case of two-dimensional flow. ududThe increase with Mach number of the pressures over a slender body of revolution is much less rapid than for a two-dimensional airfoil. An approximate formula from which the increase can be estimated is derived theoretically. ududThe increase with Mach number of the maximum axial interference velocity on a slender body of revolution in a closed wind tunnel is given approximately by the factor 1/((1-M[sub]1^2)^-3/2), rather than by the factor 1/([sqrt](1-M[sub]1^2)) previously obtained by Goldstein and Young and by Tsien and Lees.
机译:一般认为,用于可压缩流体亚音速流动的Prandtl-Glauert方法会导致细长的旋转体上的压力增加1 /([sqrt](1-M [sub] 1 ^ 2 ))(其中M [1]是不可扰流中的马赫数)与不可压缩流中的压力相比。但是,德国最近在此问题上的工作表明,因子1 /([sqrt](1-M [sub] 1 ^ 2))在这种情况下不适用。在当前的讨论中, udPrandtl-Glauert方法在三维流中的更仔细的应用给出了以下结果: ud udPrandtl-Glauert方法不会导致独立于形状的通用速度或压力校正公式的身体。因子1 /([sqrt](1-M [sub] 1 ^ 2))仅适用于二维流的情况。 ud ud细长旋转体上的压力随马赫数的增加要比二维机翼快得多。从理论上可以推导出一个近似公式,据此可以估算出增加量。 ud ud在封闭的风洞中细长旋转体上的最大轴向干涉速度随马赫数的增加近似为1 /(((1-M [sub] 1 ^ 2)^-3/2 ),而不是之前由Goldstein和Young以及Tsien和Lees获得的因子1 /([sqrt](1-M [sub] 1 ^ 2))。

著录项

  • 作者

    Lees Lester;

  • 作者单位
  • 年度 1946
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号