首页> 外文OA文献 >Neural Network Based Traffic Prediction for Wireless Data Networks
【2h】

Neural Network Based Traffic Prediction for Wireless Data Networks

机译:基于神经网络的无线数据网络流量预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a wireless network environment accurate and timely estimation or prediction of network traffic has gained much importance in the recent past. The network applications use traffic prediction results to maintain its performance by adopting its behaviors. Network Service provider will use the prediction values in ensuring the better Quality of Service(QoS) to the network users by admission control and load balancing by inter or intra network handovers. This paper presents modeling and prediction of wireless network traffic. Here traffic is modeled as nonlinear and non-stationary time series. The nonlinear and non-stationary time series traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network (NN) architectures used in this study are Recurrent Radial Basis Function Network (RRBFN) and Echo state network (ESN).The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA) model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively.
机译:在无线网络环境中,准确且及时的估计或预测网络流量在最近的过去已经大得多。网络应用程序使用流量预测结果来通过采用其行为来维护其性能。网络服务提供商将通过准入控制和通过InterNATLE网络切换来确保通过准入控制和负载平衡来确保更好的服务质量(QoS)对网络用户的预测值。本文提出了无线网络流量的建模和预测。这里的流量被建模为非线性和非静止时间序列。使用神经网络和统计方法预测非线性和非静止时间序列流量。两种方法的结果在不同的时间尺度或时间粒度上比较。本研究中使用的神经网络(NN)架构是经常性的径向基函数网络(RRBFN)和回声状态网络(ESN)。此工作中使用的统计模型是分数自动回归集成移动平均(Farima)模型。神经网络和统计模型的交通预测准确性分别为96.4%至98.3%和78.5%至80.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号