We report a novel forward-imaging optical coherence tomography (OCT), needle-probe paired-angle-rotation scanning OCT (PARS-OCT) probe. The probe uses two rotating angled gradient-index lenses to scan the output OCT probe beam over a wide angular arc (∼19° half-angle) of the region forward of the probe. Among other advantages, this probe design is readily amenable to miniaturization and is capable of a variety of scan modes, including volumetric scans. To demonstrate the advantages of the probe design, we have constructed a prototype probe with an outer diameter of 1.65 mm and employed it to acquire four OCT images, with a 45° angle between adjacent images, of the gill structure of a Xenopus laevis tadpole. The system sensitivity was measured to be 93 dB by using the prototype probe with an illumination power of 450 μW on the sample. Moreover, the axial and the lateral resolutions of the probe are 9.3 and 10.3-12.5 μm, respectively.
展开▼