首页> 外文OA文献 >Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks
【2h】

Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

机译:使用人工神经网络在四个西非沿海河流中的曲折和预测水生昆虫丰富

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM), an unsupervised Artificial Neural Networks (ANN) method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata). This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP), trained by BackPropagation algorithm (BP), a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera). The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.
机译:尽管他们对溪流管理重视,但水生昆虫组合仍然在西非仍然众所周知。这在东南象牙海岸尤其如此,几乎没有研究水生昆虫组合。因此,我们旨在在东南象牙海岸的四个沿海河流上表征水生昆虫组合。使用自组织地图(SOM),无监督的人工神经网络(ANN)方法实现了图案化水产昆虫组合。基于五个主要昆虫(Diptera,ephemeroptera,Coleoptera,Trichoptera和Odonata)的五个主要秩序的丰富性施加该方法以模式样本。这允许识别主要与采样点的当地环境状况相关的三个集群。然后,我们利用了站点的环境特征来预测,使用多层的感知术语(MLP),由反向衰退算法(BP),监督ANN,五种昆虫订单的丰富性训练。该BP显示出高可预测性(对于Diptera和Trichoptera的0.90,对于鞘翅目和odonata,0.84,Ephemeroptera为0.69)。预测五种昆虫秩序丰富性的最有贡献变量是pH,电导率,总溶解固体,水温,岩石和冠层的百分比。这强调了仪器特征和河岸背景的关键影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号