首页> 外文OA文献 >Algorithms for super-resolution of images based on Sparse Representation and Manifolds
【2h】

Algorithms for super-resolution of images based on Sparse Representation and Manifolds

机译:基于稀疏表示和歧管的图像超分辨率的算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super-resolution problems. Indeed, in order to estimate an output image, we adopt a mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already perform well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in order to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the-art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.
机译:图像超分辨率被定义为增强图像空间分辨率的技术。超分辨率方法可以在单图像和多图像方法中进行细分。本文侧重于基于单幅图​​像超分辨率问题的数学理论的开发算法。实际上,为了估计输出图像,我们采用了混合方法:即,我们使用带有稀疏限制的补丁词典(基于学习的方法的典型)和正规化项(基于重建的典型方法)。虽然现有方法已经表现良好,但他们没有考虑到数据的几何形状:正规化解决方案,群集数据样本(样本通常使用具有欧几里德距离的算法群集为不同度量的算法),学习词典(它们是经常使用PCA或K-SVD学习)。因此,最先进的方法仍然遭受缺点。在这项工作中,我们提出了三种新方法来克服这些缺陷。首先,我们开发了SE-ASDS(基于结构张量的正则化术语),以提高边缘的锐度。 SE-ASDS比许多最先进的算法实现了更好的结果。然后,我们提出了用于确定可以计算良好本地模型的训练样本的本地训练样本子集的AGNN和GOC算法来重建给定的输入测试样本,我们考虑了数据的底层几何形状。 AGNN和GOC方法在大多数设置中优于基于频谱聚类,软群和基于测地距离的子集选择。接下来,我们提出了ASOB策略,该策略考虑了数据的几何和字典大小。 ASOB策略优于PCA和PGA方法。最后,我们将所有方法与一个名为G2SR的独特算法相结合。与最先进的方法的结果相比,我们所提出的G2SR算法显示出更好的视觉和定量结果。

著录项

  • 作者

    Júlio Ferreira;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号