首页> 外文OA文献 >Linearly Decoupled Energy-Stable Numerical Methods for Multicomponent Two-Phase Compressible Flow
【2h】

Linearly Decoupled Energy-Stable Numerical Methods for Multicomponent Two-Phase Compressible Flow

机译:用于多组分两相可压缩流动的线性解耦的能量稳定数值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, for the first time we propose two linear, decoupled,energy-stable numerical schemes for multi-component two-phase compressible flowwith a realistic equation of state (e.g. Peng-Robinson equation of state). Themethods are constructed based on the scalar auxiliary variable (SAV) approachesfor Helmholtz free energy and the intermediate velocities that are designed todecouple the tight relationship between velocity and molar densities. Theintermediate velocities are also involved in the discrete momentum equation toensure the consistency with the mass balance equations. Moreover, we propose acomponent-wise SAV approach for a multi-component fluid, which requires solvinga sequence of linear, separate mass balance equations. We prove that themethods preserve the unconditional energy-dissipation feature. Numericalresults are presented to verify the effectiveness of the proposed methods.
机译:在本文中,我们首次提出了两个线性,去耦,能量稳定的数字方案,用于多组分两相可压缩流动的状态(例如彭 - 罗宾逊方程)的真实方程。基于标量辅助变量(SAV)方法构造了Helmholtz自由能和中间速度,该中间速度设计为速度和摩尔密度之间的紧密关系。 Cintermedie速度也参与了离散的动量方程,与质量平衡方程进行了一致性。此外,我们提出了用于多分量流体的Acomponent-Wise Sav方法,该方法需要溶解的线性,单独的质量平衡方程。我们证明了本体验中的无条件能量耗散特征。提出了数值结果以验证所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号