首页> 外文OA文献 >Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction
【2h】

Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction

机译:基于加强学习的智能电网预测的新型自适应学习框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Smart grid is a potential infrastructure to supply electricity demand for end users in a safe and reliable manner. With the rapid increase of the share of renewable energy and controllable loads in smart grid, the operation uncertainty of smart grid has increased briskly during recent years. The forecast is responsible for the safety and economic operation of the smart grid. However, most existing forecast methods cannot account for the smart grid due to the disabilities to adapt to the varying operational conditions. In this paper, reinforcement learning is firstly exploited to develop an online learning framework for the smart grid. With the capability of multitime scale resolution, wavelet neural network has been adopted in the online learning framework to yield reinforcement learning and wavelet neural network (RLWNN) based adaptive learning scheme. The simulations on two typical prediction problems in smart grid, including wind power prediction and load forecast, validate the effectiveness and the scalability of the proposed RLWNN based learning framework and algorithm.
机译:智能电网是一种以安全可靠的方式为最终用户提供电力需求的潜在基础架构。随着智能电网可再生能源和可控负载的快速增长,近年来智能电网的运行不确定性随着速度而增加。预测负责智能电网的安全和经济运行。然而,由于残疾的可能性,最现有的预测方法不能占智能电网,以适应不同的操作条件。在本文中,首先利用加强学习来开发智能电网的在线学习框架。通过多尺度规模分辨率的能力,在线学习框架中采用了小波神经网络,以产生基于加强学习和小波神经网络(RLWNN)的自适应学习方案。智能电网中两个典型预测问题的仿真,包括风力电力预测和负载预测,验证了所提出的基于RLWNN的学习框架和算法的效力和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号