首页> 外文OA文献 >Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review
【2h】

Social Media as a Research Tool (SMaaRT) for Risky Behavior Analytics: Methodological Review

机译:社交媒体作为危险行为分析的研究工具(SMAART):方法论审查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundModifiable risky health behaviors, such as tobacco use, excessive alcohol use, being overweight, lack of physical activity, and unhealthy eating habits, are some of the major factors for developing chronic health conditions. Social media platforms have become indispensable means of communication in the digital era. They provide an opportunity for individuals to express themselves, as well as share their health-related concerns with peers and health care providers, with respect to risky behaviors. Such peer interactions can be utilized as valuable data sources to better understand inter-and intrapersonal psychosocial mediators and the mechanisms of social influence that drive behavior change. ObjectiveThe objective of this review is to summarize computational and quantitative techniques facilitating the analysis of data generated through peer interactions pertaining to risky health behaviors on social media platforms. MethodsWe performed a systematic review of the literature in September 2020 by searching three databases—PubMed, Web of Science, and Scopus—using relevant keywords, such as “social media,” “online health communities,” “machine learning,” “data mining,” etc. The reporting of the studies was directed by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two reviewers independently assessed the eligibility of studies based on the inclusion and exclusion criteria. We extracted the required information from the selected studies. ResultsThe initial search returned a total of 1554 studies, and after careful analysis of titles, abstracts, and full texts, a total of 64 studies were included in this review. We extracted the following key characteristics from all of the studies: social media platform used for conducting the study, risky health behavior studied, the number of posts analyzed, study focus, key methodological functions and tools used for data analysis, evaluation metrics used, and summary of the key findings. The most commonly used social media platform was Twitter, followed by Facebook, QuitNet, and Reddit. The most commonly studied risky health behavior was nicotine use, followed by drug or substance abuse and alcohol use. Various supervised and unsupervised machine learning approaches were used for analyzing textual data generated from online peer interactions. Few studies utilized deep learning methods for analyzing textual data as well as image or video data. Social network analysis was also performed, as reported in some studies. ConclusionsOur review consolidates the methodological underpinnings for analyzing risky health behaviors and has enhanced our understanding of how social media can be leveraged for nuanced behavioral modeling and representation. The knowledge gained from our review can serve as a foundational component for the development of persuasive health communication and effective behavior modification technologies aimed at the individual and population levels.
机译:背景,烟草使用,过度的酒精使用,超重,体育活动和不健康的饮食习惯,是发展慢性健康状况的一些主要因素。社交媒体平台已成为数字时代沟通不可或缺的手段。他们为个人提供了一个机会,并在风险行为方面与同行和医疗保健提供者分享与同行和医疗保健提供者的与健康有关的关切。这种对等相互作用可以用作有价值的数据来源,以更好地了解跨和颅内心理社会调解员以及驱动行为变革的社会影响力的机制。本综述目的的目的是总结促进通过对社交媒体平台上有风险健康行为所产生的对同伴相互作用产生的数据进行分析的计算和定量技术。方法网络在9月2020年9月通过搜索三个数据库 - PubMed,Scopus和Scopus使用相关的关键字,例如“社交媒体”,“在线健康社区”,“机器学习”,“机器学习”,对文献进行了系统审查。 “等等。研究的报告是由PRISMA(优选的系统评价和Meta-Analyses)指导方针的指导。两位审稿人独立评估了基于纳入和排除标准的研究资格。我们从所选研究中提取所需信息。结果初始搜索总共返回了1554项研究,并在仔细分析标题,摘要和全文后,共有64项研究综述了这一审查。我们从所有研究中提取了以下关键特征:用于进行研究的社交媒体平台,研究危险的健康行为,分析的帖子数,研究焦点,关键方法论功能和用于数据分析,评估指标的工具,以及所使用的评估指标关键发现摘要。最常用的社交媒体平台是Twitter,其次是Facebook,Quitnet和Reddit。最常见的风险健康行为是尼古丁使用,其次是药物或药物滥用和酒精使用。各种监督和无监督的机器学习方法用于分析从在线对等相互作用生成的文本数据。很少有研究利用深度学习方法分析文本数据以及图像或视频数据。如一些研究所述,还进行了社会网络分析。结论您的评论巩固了用于分析风险健康行为的方法的内限,并提高了我们对社交媒体如何利用患者对患者对肠梗行为建模和代表性的理解。我们审查中获得的知识可以作为开发有说服力的健康沟通和有效行为修改技术的基本组成部分,旨在为个人和人口水平的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号