首页> 外文OA文献 >Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials
【2h】

Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials

机译:通过三角多项式离散最小二乘近似分段 - 线性函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let N be a natural number greater than 1. Select N uniformly distributed points t_k = 2πk/N (0 ≤ k ≤ N − 1) on [0, 2π]. Denote by L_{n,N} (f) = L_{n,N} (f, x) (1 ≤ n ≤ N/2) the trigonometric polynomial of order n possessing the least quadratic deviation from f with respect to the system {t_k}^(N−1)_k=0 . In this article approximation of functions by the polynomials L_{n,N} (f, x) is considered. Special attention is paid to approximation of 2π-periodic functions f_1 and f_2 by the polynomials L_{n,N} (f, x), where f_1(x) = |x| and f_2(x) = sign x for x ∈ [−π, π]. For the first function f_1 we show that instead of the estimation |f_1(x) − L_{n,N} (f_1, x)| ≤ c ln n/n which follows from the well-known Lebesgue inequality for the polynomials L_{n,N} (f, x) we found an exact order estimation |f_1(x) − L_{n,N} (f_1, x)| ≤ c/n (x ∈ R) which is uniform with respect to 1 ≤ n ≤ N/2. Moreover, we found a local estimation |f_1(x) − L_{n,N} (f_1, x)| ≤ c(ε)/n2 (|x − πk| ≥ ε) which is also uniform with respect to 1 ≤ n ≤ N/2. For the second function f_2 we found only a local estimation |f_2(x) − L_{n,N} (f_2, x)| ≤ c(ε)/n (|x − πk| ≥ ε) which is uniform with respect to 1 ≤ n ≤ N/2. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
机译:设N是一个自然数大于1的选择N均匀分布的点t_k =2πk/ N(0≤ķ≤N - 1)[0,2π]。表示由L_ {N,N}(F)= L_ {N,N}(F,X)(1≤N≤N / 2)的顺序的三角多项式n,其中对于具有从F中的至少二次偏差到系统{t_k} ^(N-1)_K = 0。在由多项式L_ {N,N}(F,X)的功能,本文近似被考虑。特别注意的是,以近似的2π周期函数F_1和F_2由多项式L_ {N,N}(F,x),其中F_1(X)= | X |和F_2(X)=符号X对于x∈[-π,π]。对于第一功能F_1,我们表明,而不是估计| F_1(X) - L_ {N,N}(F_1,x)|的≤ÇLN N / N从公知的勒贝格不等式下面的多项式L_ {N,N}(F,X),我们发现了一个确切顺序估计| F_1(X) - L_ {N,N}(F_1, X)| ≤C / N(X∈R),它是均匀的,相对于1≤N≤N / 2。此外,我们发现了一个本地估计| F_1(X) - L_ {N,N}(F_1,x)|的≤C(ε)/ N 2(| X - πK|≥ε),其也是均匀的,相对于1≤N≤N / 2。对于第二功能F_2,我们发现只有一个本地估计| F_2(X) - L_ {N,N}(F_2,x)|的≤C(ε)/ N(| X - πK|≥ε),其是均匀的,相对于1≤N≤N / 2。这些估计的证据是基于逼近离散和连续有限傅里叶级数的性质的比较。

著录项

  • 作者

    G. G. Akniyev;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng;rus
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号