首页> 外文OA文献 >Joint person re-identification and camera network topology inference in multiple cameras
【2h】

Joint person re-identification and camera network topology inference in multiple cameras

机译:联合人员重新识别和相机网络拓扑推理在多个摄像机中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Person re-identification is the task of recognizing or identifying a personacross multiple views in multi-camera networks. Although there has been muchprogress in person re-identification, person re-identification in large-scalemulti-camera networks still remains a challenging task because of the largespatio-temporal uncertainty and high complexity due to a large number ofcameras and people. To handle these difficulties, additional information suchas camera network topology should be provided, which is also difficult toautomatically estimate, unfortunately. In this study, we propose a unifiedframework which jointly solves both person re-identification and camera networktopology inference problems with minimal prior knowledge about theenvironments. The proposed framework takes general multi-camera networkenvironments into account and can be applied to online person re-identificationin large-scale multi-camera networks. In addition, to effectively show thesuperiority of the proposed framework, we provide a new personre-identification dataset with full annotations, named SLP, captured in themulti-camera network consisting of nine non-overlapping cameras. Experimentalresults using our person re-identification and public datasets show that theproposed methods are promising for both person re-identification and cameratopology inference tasks.
机译:人重新识别是在多摄像机网络中识别或识别人员多个视图的任务。虽然在人重新识别中有很多人重新识别,但由于大量的容器和人民,大量的不确定度和高度复杂性,人们在大型Scalemulti-相机网络中重新识别仍然是一个具有挑战性的任务。为了处理这些困难,应提供额外的信息如此诸如相机网络拓扑,这是难以估计的难度估计。在这项研究中,我们提出了一个统一的福利,共同解决了人们重新识别和相机网络技术推理问题,以最小的关于环境的知识。建议的框架考虑了一般的多相机网络环境,可以应用于在线人重新确定大规模的多摄像机网络。此外,为了有效地展示所提出的框架的构思,我们提供了一个具有完整注释,名为SLP的新的人格识别数据集,该数据集由九个非重叠相机组成的Themulti-Camera网络中捕获。使用我们的人重新识别和公共数据集的实验结果表明,有关的方法对人员重新识别和堤流理推理任务有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号