首页> 外文OA文献 >The Use of a Machine Learning Method to Predict the Real-Time Link Travel Time of Open-Pit Trucks
【2h】

The Use of a Machine Learning Method to Predict the Real-Time Link Travel Time of Open-Pit Trucks

机译:使用机器学习方法预测露天卡车的实时链路行程时间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate truck travel time prediction (TTP) is one of the critical factors in the dynamic optimal dispatch of open-pit mines. This study divides the roads of open-pit mines into two types: fixed and temporary link roads. The experiment uses data obtained from Fushun West Open-pit Mine (FWOM) to train three types of machine learning (ML) prediction models based on k-nearest neighbors (kNN), support vector machine (SVM), and random forest (RF) algorithms for each link road. The results show that the TTP models based on SVM and RF are better than that based on kNN. The prediction accuracy calculated in this study is approximately 15.79% higher than that calculated by traditional methods. Meteorological features added to the TTP model improved the prediction accuracy by 5.13%. Moreover, this study uses the link rather than the route as the minimum TTP unit, and the former shows an increase in prediction accuracy of 11.82%.
机译:准确的卡车旅行时间预测(TTP)是露天矿井动态最佳调度中的关键因素之一。本研究将露天矿井的道路分为两种类型:固定和临时链接道路。该实验使用从抚顺西部露天矿山(FWOM)获得的数据,以培训基于K-CORMENT邻居(KNN),支持向量机(SVM)和随机林(RF)的三种机器学习(ML)预测模型每个链接道路的算法。结果表明,基于SVM和RF的TTP模型优于基于KNN的TTP模型。本研究中计算的预测精度比传统方法计算的高约15.79%。添加到TTP模型的气象特征将预测精度提高了5.13%。此外,该研究使用链路而不是作为最小TTP单元的路线,并且前者显示出预测精度的增加11.82%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号