首页> 外文OA文献 >Transversal Vibration of Chain Ropeway System Having Support Boundary Conditions with Polygonal Action
【2h】

Transversal Vibration of Chain Ropeway System Having Support Boundary Conditions with Polygonal Action

机译:链索道系统的横向振动,具有多边形动作的支持边界条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this paper is to characterize the modal parameters and transverse vibrations of a monochain ropeway system for hilly orchards. The moving chain is modeled with uniform distribution and concentrated inertial loads. In order to study the dynamical behavior of the moving chain, Hamilton’s principle is applied to obtain the homogenous differential equation of transverse vibration. With the boundary conditions subjected to the polygonal action caused by chain-support engagement, the coupling effect of concentrated load, variable tension, and time-dependent speed on transverse vibration is investigated. The contribution of residue of singularity to total vibrations in phase space is numerically analyzed by using the Laplace transform method. The influence of the boundary condition considering the polygonal action is investigated in terms of excitation frequency and amplitude coupled with transport speed. The transverse vibrations are calculated numerically and measured experimentally. The numerical results are in agreement with the experimental data, which suggest that the amplitude and frequency of vibration are proportional to the value of propagation speed. The analytical solution to the moving chain problem provides a feasible reference for its stability analysis and wind-induced vibration control.
机译:本文的目的是,为丘陵果园的单编索道系统的模态参数和横向振动。移动链以均匀的分布和浓缩的惯性载荷进行建模。为了研究移动链的动态行为,汉密尔顿的原理应用于获得横向振动的均质微分方程。利用由链支撑接合引起的多边形动作进行边界条件,研究了浓缩负荷,可变张力和时间依赖性速度对横向振动的耦合效果。通过使用拉普拉斯变换方法,用Laplace变换方法对奇点对总振动进行奇点对总振动的贡献。考虑到多边形动作的边界条件的影响是在激发频率和输送速度耦合的振幅方面进行研究。横向振动在数量上计算并实验测量。数值结果与实验数据一致,表明振动的幅度和频率与传播速度的值成比例。移动链问题的分析解决方案为其稳定性分析和风力诱导的振动控制提供了可行的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号