首页> 外文OA文献 >Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access
【2h】

Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access

机译:用于分布式动态频谱接入的深度多用户增强学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of dynamic spectrum access for network utilitymaximization in multichannel wireless networks. The shared bandwidth is dividedinto K orthogonal channels. In the beginning of each time slot, each userselects a channel and transmits a packet with a certain attempt probability.After each time slot, each user that has transmitted a packet receives a localobservation indicating whether its packet was successfully delivered or not(i.e., ACK signal). The objective is a multi-user strategy for accessing thespectrum that maximizes a certain network utility in a distributed mannerwithout online coordination or message exchanges between users. Obtaining anoptimal solution for the spectrum access problem is computationally expensivein general due to the large state space and partial observability of thestates. To tackle this problem, we develop a novel distributed dynamic spectrumaccess algorithm based on deep multi-user reinforcement leaning. Specifically,at each time slot, each user maps its current state to spectrum access actionsbased on a trained deep-Q network used to maximize the objective function. Gametheoretic analysis of the system dynamic is developed for establishing designprinciples for the implementation of the algorithm. Experimental resultsdemonstrate strong performance of the algorithm.
机译:我们考虑在多通道无线网络中网络实用程序的动态频谱访问问题。共享带宽是DividedInto K正交通道。在每个时隙的开头,每个用户围住频道并使用特定的尝试概率发送分组。在每个时隙中,每个时隙,每个已发送分组的用户都接收localogserative,指示其数据包是否成功传送(即,ACK)信号)。目标是用于访问5号的多用户策略,以便以分布式方式最大化某个网络实用程序,以分布式方式在线协调或用户之间的消息交换。由于大量的状态空间和题目的局部可观察性,获得频谱接入问题的ApOptimal解决方案是计算贵宾一般。为了解决这个问题,我们开发了一种基于深度多用户增强倾斜的新型分布式动态频谱算法。具体地,在每个时隙时,每个用户将其当前状态映射到用于最大化目标函数的训练的深Q网络上的频谱访问。开发了系统动态的赌徒分析,用于建立用于实现算法的设计前言。实验结果Demontrite算法的强度性能强。

著录项

  • 作者

    Oshri Naparstek; Kobi Cohen;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号