首页> 外文OA文献 >Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods
【2h】

Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods

机译:使用一般和分子宿主专用指示器和应用机器学习方法预测各种污染负荷的水中粪便源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study we use a machine learning software (Ichnaea) to generate predictive models for water samples with different concentrations of fecal contamination (point source, moderate and low). We applied several MST methods (host-specific Bacteroides phages, mitochondrial DNA genetic markers, Bifidobacterium adolescentis and Bifidobacterium dentium markers, and bifidobacterial host-specific qPCR), and general indicators (Escherichia colt, enterococci and somatic coliphages) to evaluate the source of contamination in the samples. The results provided data to the Ichnaea software, that evaluated the performance of each method in the different scenarios and determined the source of the contamination. Almost all MST methods in this study determined correctly the origin of fecal contamination at point source and in moderate concentration samples. When the dilution of the fecal pollution increased (below 3 log(10) CPU E. coli/100 ml) some of these indicators (bifidobacterial host-specific qPCR, some mitochondrial markers or B. dentium marker) were not suitable because their concentrations decreased below the detection limit. Using the data from source point samples, the software Ichnaea produced models for waters with low levels of fecal pollution. These models included some MST methods, on the basis of their best performance, that were used to determine the source of pollution in this area. Regardless the methods selected, that could vary depending on the scenario, inductive machine learning methods are a promising tool in MST studies and may represent a leap forward in solving MST cases.
机译:在这项研究中,我们使用机器学习软件(ICHNAEA)来为具有不同浓度的粪便污染(点源,中等和低)产生预测模型。我们应用了几种MST方法(宿主特异性拟菌噬菌体,线粒体DNA遗传标志物,双歧杆菌属植物和双歧杆菌标记物,以及双歧杆菌宿主特异性QPCR),以及一般指标(大肠杆菌,肠球菌和体细胞池)来评估污染源来源在样品中。结果为ICHNAEA软件提供了数据,该软件评估了不同场景中每种方法的性能,并确定了污染的源。本研究中几乎所有MST方法都确定了点源和中等浓度样品的粪便污染的起源。当粪便污染的稀释增加时(低于3对数(10)CPU大肠杆菌/ 100mL)其中一些指标(双歧杆菌宿主特异性QPCR,一些线粒体标记物或B.初期标记物)不适合,因为它们的浓度降低了低于检测限。使用来自源点样本的数据,软件ICHNAEA为具有低水平粪便污染的水域生产的模型。这些模型包括一些MST方法,基于它们的最佳性能,用于确定该领域的污染源。无论选择所选择的方法,可能因方案而异,电感机学习方法是MST研究中有前途的工具,可以代表解决MST情况的跨越式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号