首页> 外文OA文献 >Adaptive Two-Stage Extended Kalman Filter Theory in Application of Sensorless Control for Permanent Magnet Synchronous Motor
【2h】

Adaptive Two-Stage Extended Kalman Filter Theory in Application of Sensorless Control for Permanent Magnet Synchronous Motor

机译:适应性两级扩展卡尔曼滤波理论,适用于永磁同步电动机无传感器控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extended Kalman filters (EKF) have been widely used for sensorless field oriented control (FOC) in permanent magnet synchronous motor (PMSM). The first key problem associated with EKF is that the estimator requires all the plant dynamics and noise processes are exactly known. To compensate inaccurate model information and improve tracking ability, adaptive fading extended Kalman filtering algorithms have been proposed for the nonlinear system. The second key problem is that the EKF suffers from computational burden and numerical problems when state dimension is large. The two-stage extended Kalman filter (TSEKF) with respect to this problem has been extensively studied in the past. Combining the advantages of both AFEKF and TSEKF, this paper presents an adaptive two-stage extended Kalman filter (ATEKF) for closed-loop position and speed estimation of a PMSM to achieve sensorless operation. Experimental results demonstrate that the proposed ATEKF algorithm for PMSMs has strong robustness against model uncertainties and very good real-time state tracking ability.
机译:扩展卡尔曼滤波器(EKF)已广泛用于永磁同步电机(PMSM)中的无传感器场取向控制(FOC)。与EKF相关的第一关键问题是估计器需要所有植物动力学和噪声过程恰恰知道。为了补偿不准确的模型信息并改善跟踪能力,已经提出了用于非线性系统的自适应衰落扩展卡尔曼滤波算法。第二个关键问题是,当国家维度大时,EKF遭受计算负担和数值问题。过去研究了两个问题的两级扩展卡尔曼滤波器(TSEKF)已被广泛研究。本文结合了AFEKF和TSEKF的优点,提供了一种自适应两级扩展卡尔曼滤波器(ATEKF),用于闭环位置和PMSM的速度估计,以实现无传感器操作。实验结果表明,拟议的PMSMS的ATEKF算法具有强大的模型不确定性和非常好的实时状态跟踪能力的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号