首页> 外文OA文献 >Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy
【2h】

Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy

机译:RNA结合蛋白SFPQ的丧失导致骨骼肌中的长期转录病变,并用代谢肌病减少严重的肌肉质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Summary: Growing evidences are suggesting that extra-long genes in mammals are vulnerable for full-gene length transcription and dysregulation of long genes is a mechanism underlying human genetic disorders. How long-distance transcription is achieved is a fundamental question to be elucidated. In previous study, we had discovered that RNA-binding protein SFPQ preferentially binds to long pre-mRNAs and specifically regulates the cluster of neuronal genes >100 kbp. Here we investigated the roles of SFPQ for long gene expression, target specificities, and also physiological functions in skeletal muscle. Loss of Sfpq selectively downregulated genes >100 kbp including Dystrophin, which is 2.26 Mbp in length. Sfpq knockout (KO) mice showed progressive muscle mass reduction and metabolic myopathy characterized by glycogen accumulation and decreased abundance of mitochondrial oxidative phosphorylation complexes. Functional clustering analysis identified energy metabolism pathway genes as SFPQ's targets. These findings indicate target gene specificities and tissue-specific physiological functions of SFPQ in skeletal muscle. : Molecular Biology; Molecular Mechanism of Gene Regulation; Pathophysiology Subject Areas: Molecular Biology, Molecular Mechanism of Gene Regulation, Pathophysiology
机译:总结:生长证据都表明超长基因在哺乳动物中是脆弱的用于全基因长度转录和长基因的失调是人类遗传病症底层的机构。如何长途转录实现的是要阐明一个根本性的问题。在以前的研究中,我们已经发现了RNA结合蛋白SFPQ优先与前期多头的mRNA和专门调节神经元基因簇> 100 KBP。在这里,我们调查了SFPQ的角色长期基因表达,目标特异性和骨骼肌中也生理功能。 SFPQ的损失选择性地下调的基因> 100 kbp的肌营养不良蛋白,包括,其是2.26 Mbp的长度。 SFPQ敲除(KO)小鼠显示渐进性肌肉质量减少和代谢性肌病,其特征在于糖原累积和降低的线粒体氧化磷酸化复合物的丰度。功能性聚类分析鉴定能量代谢途径基因,SFPQ的目标。这些结果表明靶基因特异性和骨骼肌组织特异性SFPQ的生理功能。 : 分子生物学;基因调控的分子机制;病理生理学学科领域:分子生物学,基因调控,病理生理学的分子机制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号