首页> 外文OA文献 >Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method
【2h】

Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method

机译:基于模糊规则的基于规则的分类系统,用于使用二进制分解策略的多级问题:在模糊推理方法中的n维重叠函数的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-class classification problems appear in a broad variety of real-world problems, e.g., medicine, genomics, bioinformatics, or computer vision. In this context, decomposition strategies are useful to increase the classification performance of classifiers. For this reason, in a previous work we proposed to improve the performance of FARC-HD (Fuzzy Association Rule-based Classification model for High-Dimensional problems) fuzzy classifier using One-vs-One (OVO) and One-vs-All (OVA) decomposition strategies. As a result of an exhaustive experimental analysis, we concluded that even though the usage of decomposition strategies was worth to be considered, further improvements could be achieved by introducing n-dimensional overlap functions instead of the product t-norm in the Fuzzy Reasoning Method (FRM). In this way, we can improve confidences for the subsequent processing performed in both OVO and OVA.In this paper, we want to conduct a broader study of the influence of the usage of n-dimensional overlap functions to model the conjunction in several Fuzzy Rule-Based Classification Systems (FRBCSs) in order to enhance their performance in multi-class classification problems applying decomposition techniques. To do so, we adapt the FRM of four well-known FRBCSs (CHI, SLAVE, FURIA, and FARC-HD itself). We will show that the benefits of the usage of n-dimensional overlap functions strongly depend on both the learning algorithm and the rule structure of each classifier, which explains why FARC-HD is the most suitable one for the usage of these functions.
机译:多级分类问题出现在广泛的现实问题中,例如医学,基因组学,生物信息学或计算机视觉。在这种情况下,分解策略可用于增加分类器的分类性能。因此,在先前的工作中,我们建议提高FARC-HD(基于模糊关联规则的分类模型的高维问题的分类模型)模糊分类器使用一VS-ONE(OVO)和一vs-all( OVA)分解策略。由于实验分析详尽,我们得出结论,即使有价值的分解策略的使用,也可以通过在模糊推理方法中引入N维重叠功能而不是产品T-NOM来实现进一步的改进( FRM)。通过这种方式,我们可以改善对OVO和OVA两者和OVA中的后续处理的信心。在本文中,我们希望对N维重叠功能的使用的影响更广泛地研究模拟多个模糊规则中的结合基于分类系统(FRBCS),以提高应用分解技术的多级分类问题中的性能。为此,我们适应四个着名的FRBCS(Chi,Slave,Furia和Farc-HD本身)的FRM。我们将表明,N维重叠的使用的好处强烈依赖于每个分类器的学习算法和规则结构,这解释了为什么Farc-HD是用于使用这些功能的最适合的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号