首页> 外文OA文献 >Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network
【2h】

Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network

机译:基于深度卷积神经网络基于眼底图像的糖尿病视网膜病变的计算机辅助诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diabetic retinopathy (DR) is a complication of long-standing diabetes, which is hard to detect in its early stage because it only shows a few symptoms. Nowadays, the diagnosis of DR usually requires taking digital fundus images, as well as images using optical coherence tomography (OCT). Since OCT equipment is very expensive, it will benefit both the patients and the ophthalmologists if an accurate diagnosis can be made, based solely on reading digital fundus images. In the paper, we present a novel algorithm based on deep convolutional neural network (DCNN). Unlike the traditional DCNN approach, we replace the commonly used max-pooling layers with fractional max-pooling. Two of these DCNNs with a different number of layers are trained to derive more discriminative features for classification. After combining features from metadata of the image and DCNNs, we train a support vector machine (SVM) classifier to learn the underlying boundary of distributions of each class. For the experiments, we used the publicly available DR detection database provided by Kaggle. We used 34,124 training images and 1,000 validation images to build our model and tested with 53,572 testing images. The proposed DR classifier classifies the stages of DR into five categories, labeled with an integer ranging between zero and four. The experimental results show that the proposed method can achieve a recognition rate up to 86.17%, which is higher than previously reported in the literature. In addition to designing a machine learning algorithm, we also develop an app called “Deep Retina.” Equipped with a handheld ophthalmoscope, the average person can take fundus images by themselves and obtain an immediate result, calculated by our algorithm. It is beneficial for home care, remote medical care, and self-examination.
机译:糖尿病视网膜病变(DR)是长期糖尿病的并发症,这在早期阶段难以检测,因为它只显示出几种症状。如今,DR的诊断通常需要采用数字基底图像,以及使用光学相干断层扫描(OCT)的图像。由于OCT设备非常昂贵,如果可以基于读取数字基底图像,可以使患者和眼科医生有益于患者和眼科医生。在本文中,我们介绍了一种基于深卷积神经网络(DCNN)的新型算法。与传统的DCNN方法不同,我们替换具有分数最大池的常用的最大池层。培训具有不同数量的层的这些DCNN中的两个,以导出用于分类的更多辨别特征。在从图像和DCNN的元数据结合功能之后,我们训练支持向量机(SVM)分类器,以了解每个类的发行版的底层边界。对于实验,我们使用了卡格提供的公开可用的DR检测数据库。我们使用了34,124次训练图像和1,000次验证图像来构建我们的模型并用53,572检测图像进行测试。建议的DR分类器将DR的阶段分为五个类别,标有零和四之间的整数。实验结果表明,该方法可以实现高达86.17%的识别率,高于文献中先前报道的识别率。除了设计机器学习算法外,我们还开发一个名为“Deep Retina”的应用程序。配备手持式OphthalMoscope,普通人可以自行使用眼底图像并获得由我们的算法计算的即时结果。它有利于家庭护理,远程医疗和自我检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号