首页> 外文OA文献 >Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)
【2h】

Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)

机译:基于Alos-2 Palsar-2和Sentinel-2a图像和机器学习的融合基于森林地上生物量的准确性估计:夏季森林地区(伊朗)为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main objective of this research is to investigate the potential combination of Sentinel-2A and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite -2 Phased Array type L-band Synthetic Aperture Radar-2) imagery for improving the accuracy of the Aboveground Biomass (AGB) measurement. According to the current literature, this kind of investigation has rarely been conducted. The Hyrcanian forest area (Iran) is selected as the case study. For this purpose, a total of 149 sample plots for the study area were documented through fieldwork. Using the imagery, three datasets were generated including the Sentinel-2A dataset, the ALOS-2 PALSAR-2 dataset, and the combination of the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset (Sentinel-ALOS). Because the accuracy of the AGB estimation is dependent on the method used, in this research, four machine learning techniques were selected and compared, namely Random Forests (RF), Support Vector Regression (SVR), Multi-Layer Perceptron Neural Networks (MPL Neural Nets), and Gaussian Processes (GP). The performance of these AGB models was assessed using the coefficient of determination (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE). The results showed that the AGB models derived from the combination of the Sentinel-2A and the ALOS-2 PALSAR-2 data had the highest accuracy, followed by models using the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset. Among the four machine learning models, the SVR model (R2 = 0.73, RMSE = 38.68, and MAE = 32.28) had the highest prediction accuracy, followed by the GP model (R2 = 0.69, RMSE = 40.11, and MAE = 33.69), the RF model (R2 = 0.62, RMSE = 43.13, and MAE = 35.83), and the MPL Neural Nets model (R2 = 0.44, RMSE = 64.33, and MAE = 53.74). Overall, the Sentinel-2A imagery provides a reasonable result while the ALOS-2 PALSAR-2 imagery provides a poor result of the forest AGB estimation. The combination of the Sentinel-2A imagery and the ALOS-2 PALSAR-2 imagery improved the estimation accuracy of AGB compared to that of the Sentinel-2A imagery only.
机译:本研究的主要目的是研究Sentinel-2a和Alos-2 Palsar-2(先进的土地观察卫星-2相控阵型L波段合成射线雷达-2)图像的潜在组合,以提高地上的准确性生物量(AGB)测量。根据目前的文献,这种调查很少进行。选择Hycranian森林区域(伊朗)作为案例研究。为此目的,通过实地工作记录了研究区域的149个样本地块。使用图像,生成三个数据集,包括Sentinel-2a DataSet,Alos-2 Palsar-2数据集以及Sentinel-2a DataSet和Alos-2 Palsar-2数据集(Sentinel-Alos)的组合。因为AGB估计的准确性取决于所用方法,在本研究中,选择并比较了四种机器学习技术,即随机森林(RF),支持向量回归(SVR),多层Perceptron神经网络(MPL神经网)和高斯过程(GP)。使用确定系数(R2),根均方误差(RMSE)和平均绝对误差(MAE)来评估这些AGB模型的性能。结果表明,来自Sentinel-2a和Alos-2 Palsar-2数据组合的AGB模型具有最高的精度,然后是使用Sentinel-2a数据集的模型和Alos-2 Palsar-2数据集。在四个机器学习模型中,SVR模型(R2 = 0.73,RMSE = 38.68和MAE = 32.28)具有最高的预测精度,其次是GP模型(R2 = 0.69,RMSE = 40.11和MAE = 33.69), RF模型(R2 = 0.62,RMSE = 43.13和MAE = 35.83),以及MPL神经网络模型(R2 = 0.44,RMSE = 64.33和MAE = 53.74)。总的来说,Sentinel-2a图像提供了合理的结果,而Alos-2 Palsar-2图像提供森林AGB估计的差。 Sentinel-2a图像和Alos-2 Palsar-2图像的组合改善了与Sentinel-2a图像相比的AGB的估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号