首页> 外文OA文献 >An Intelligent Spam Detection Model Based on Artificial Immune System
【2h】

An Intelligent Spam Detection Model Based on Artificial Immune System

机译:一种基于人工免疫系统的智能垃圾邮件检测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spam emails, also known as non-self, are unsolicited commercial or malicious emails, sent to affect either a single individual or a corporation or a group of people. Besides advertising, these may contain links to phishing or malware hosting websites set up to steal confidential information. In this paper, a study of the effectiveness of using a Negative Selection Algorithm (NSA) for anomaly detection applied to spam filtering is presented. NSA has a high performance and a low false detection rate. The designed framework intelligently works through three detection phases to finally determine an email’s legitimacy based on the knowledge gathered in the training phase. The system operates by elimination through Negative Selection similar to the functionality of T-cells’ in biological systems. It has been observed that with the inclusion of more datasets, the performance continues to improve, resulting in a 6% increase of True Positive and True Negative detection rate while achieving an actual detection rate of spam and ham of 98.5%. The model has been further compared against similar studies, and the result shows that the proposed system results in an increase of 2 to 15% in the correct detection rate of spam and ham.
机译:垃圾邮件电子邮件,也被称为非自我,是未经请求的商业或恶意电子邮件,发送以影响单个个人或公司或一群人。除了广告外,这些可能包含与网络钓鱼或恶意软件托管网站的链接,以窃取机密信息。本文介绍了应用于应用于垃圾邮件滤波的异常检测的负选择算法(NSA)的有效性的研究。 NSA具有高性能和低误检测率。设计的框架通过三个检测阶段智能地工作,最终根据培训阶段收集的知识确定电子邮件的合法性。系统通过消除通过与生物系统中的T细胞的功能相似的负选择来操作。已经观察到,随着更多数据集,性能继续提高,导致真正的正负检测率提高6%,同时实现了98.5%的实际检测率。该模型进一步与类似的研究进行了比较,结果表明,所提出的系统导致垃圾邮件和火腿的正确检测速率增加2%至15%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号