首页> 外文OA文献 >Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting
【2h】

Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting

机译:多变量时间卷积网络:多变量时间序列预测的深度神经网络方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning models based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve the prediction accuracy and minimize the multivariate time series data dependence for aperiodic data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel residual blocks in parallel with asymmetric structure based on deep convolution neural network is proposed. The results are compared with rich competitive algorithms of long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction accuracy, robust and generalization of our model.
机译:多变量时间序列预测已广泛研究了电力能量,天空气象,气象,金融,运输等。传统的建模方法具有复杂的模式,并且效率低下,以捕获所需预测精度的数据的长期多变量依赖性。为了解决这些问题,提出了基于经常性神经网络(RNN)和卷积神经网络(CNN)方法的各种深度学习模型。为了提高预测准确性并最小化对非周期性数据的多变量时间序列数据依赖性,在本文中,通过新颖的多变量时间卷积网络(M-TCN)模型分析了北京PM2.5和ISO-NE数据集。在该模型中,多变量时间序列预测构造为非周期性数据集的序列到序列场景。提出了基于深卷积神经网络的非对称结构并联的多通道残余块。将结果与具有富裕的短期内存(LSTM),卷积LSTM(Convlstm),时间卷积网络(TCN)和多变量注意力LSTM-FCN(MALSTM-FCN)的竞争性算法进行比较,这表明预测准确性的显着提高,鲁棒我们模型的泛化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号