首页> 外文OA文献 >Design and Evaluation of Techniques to Utilize Implicit Rating Data in Complex Information Systems.
【2h】

Design and Evaluation of Techniques to Utilize Implicit Rating Data in Complex Information Systems.

机译:设计和评估在复杂信息系统中使用隐式评估数据的技术。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research in personalization, including recommender systems, focuses on applications such as in online shopping malls and simple information systems. These systems consider user profile and item information obtained from data explicitly entered by users - where it is possible to classify items involved and to make personalization based on a direct mapping from user or user group to item or item group. However, in complex, dynamic, and professional information systems, such as Digital Libraries, additional capabilities are needed to achieve personalization to support their distinctive features: large numbers of digital objects, dynamic updates, sparse rating data, biased rating data on specific items, and challenges in getting explicit rating data from users. In this report, we present techniques for collecting, storing, processing, and utilizing implicit rating data of Digital Libraries for analysis and decision support. We present our pilot study to find virtual user groups using implicit rating data. We demonstrate the effectiveness of implicit rating data for characterizing users and finding virtual user communities, through statistical hypothesis testing. Further, we describe a visual data mining tool named VUDM (Visual User model Data Mining tool) that utilizes implicit rating data. We provide the results of formative evaluation of VUDM and discuss the problems raised and plans for further studies.
机译:包括推荐系统在内的个性化研究集中在诸如在线购物中心和简单信息系统中的应用。这些系统考虑从用户明确输入的数据中获得的用户资料和项目信息-可以对涉及的项目进行分类,并基于从用户或用户组到项目或项目组的直接映射进行个性化设置。但是,在复杂,动态且专业的信息系统(例如数字图书馆)中,需要额外的功能来实现个性化以支持其独特功能:大量的数字对象,动态更新,稀疏的评分数据,特定项目的有偏见的评分数据,以及从用户那里获得明确的评分数据所面临的挑战。在此报告中,我们介绍了用于收集,存储,处理和利用数字图书馆的隐式评估数据进行分析和决策支持的技术。我们提出了一项初步研究,以使用隐式评级数据查找虚拟用户组。通过统计假设检验,我们证明了隐式评级数据在表征用户和查找虚拟用户社区方面的有效性。此外,我们描述了一种名为VUDM(可视用户模型数据挖掘工具)的可视数据挖掘工具,该工具利用了隐式评估数据。我们提供VUDM形成性评估的结果,并讨论提出的问题和进一步研究的计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号