首页> 外文OA文献 >DEEP LEARNING FOR VESSEL DETECTION AND IDENTIFICATION FROM SPACEBORNE OPTICAL IMAGERY
【2h】

DEEP LEARNING FOR VESSEL DETECTION AND IDENTIFICATION FROM SPACEBORNE OPTICAL IMAGERY

机译:深度学习船舶检测和空间光学图像的识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a deep learning-based vessel detection and (re-)identification approach from spaceborne optical images. We introduce these two components as part of a maritime surveillance from space pipeline and present experimental results on challenging real-world maritime datasets derived from WorldView imagery. First, we developed a vessel detection model based on RetinaNet achieving a performance of 0.795 F1-score on a challenging multi-scale dataset. We then collected a large-scale dataset for vessel identification by applying the detection model on 200+ optical images, detecting the vessels therein and assigning them an identity via an Automatic Identification System association framework. A vessel re-identification model based on Twin neural networks has then been trained on this dataset featuring 2500+ unique vessels with multiple repeated occurrences across different acquisitions. The model allows to naturally establish similarities between vessel images. It returns a relevant ranking of candidate vessels from a database when provided an input image for a specific vessel the user might be interested in, with top-1 and top-10 accuracies of 38.7% and 76.5%, respectively. This study demonstrates the potential offered by the latest advances in deep learning and computer vision when applied to optical remote sensing imagery in a maritime context, opening new opportunities for automated vessel monitoring and tracking capabilities from space.
机译:我们提出了一个深基于学习的血管检测和从星载光学图像(重新)识别方法。我们介绍这两个组件从空间管线和挑战,从世界观影像衍生真实世界的海上数据集目前的实验结果的海上监视的一部分。首先,我们开发实现0.795 F1-得分上具有挑战性的多尺度数据集的性能基础上RetinaNet船只检测模型。然后,我们通过将上200+光学图像检测模型,在其中检测到所述容器并赋予它们经由自动识别系统关联的框架的身份收集容器识别大规模数据集。基于双神经网络的血管再识别模型然后被训练在这个数据集配2500+用在不同的收购多个重复出现独特的船只。该模型允许自然地建立容器的图像之间的相似性。它返回从数据库时为特定容器中的用户可能会感兴趣的提供的输入图像,具有顶-1和顶10的精确度分别38.7%和76.5%,候选血管相关排名。这项研究表明,当在海上环境中应用光学遥感图像在深度学习和计算机视觉方面的最新进展提供的潜力,开启了自动化的船舶监测和从太空跟踪能力的新机遇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号