首页> 外文OA文献 >Fault Diagnosis Method for Hydraulic Directional Valves Integrating PCA and XGBoost
【2h】

Fault Diagnosis Method for Hydraulic Directional Valves Integrating PCA and XGBoost

机译:液压方向阀集成PCA和XGBoost的故障诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel fault diagnosis method is proposed, depending on a cloud service, for the typical faults in the hydraulic directional valve. The method, based on the Machine Learning Service (MLS) HUAWEI CLOUD, achieves accurate diagnosis of hydraulic valve faults by combining both the advantages of Principal Component Analysis (PCA) in dimensionality reduction and the eXtreme Gradient Boosting (XGBoost) algorithm. First, to obtain the principal component feature set of the pressure signal, PCA was utilized to reduce the dimension of the measured inlet and outlet pressure signals of the hydraulic directional valve. Second, a machine learning sample was constructed by replacing the original fault set with the principal component feature set. Third, the MLS was employed to create an XGBoost model to diagnose valve faults. Lastly, based on model evaluation indicators such as precision, the recall rate, and the F1 score, a test set was used to compare the XGBoost model with the Classification And Regression Trees (CART) model and the Random Forests (RFs) model, respectively. The research results indicate that the proposed method can effectively identify valve faults in the hydraulic directional valve and have higher fault diagnosis accuracy.
机译:提出了一种新的故障诊断方法,根据云服务,对于液压方向阀中的典型故障,提出了一种新的故障诊断方法。该方法基于机器学习服务(MLS)华为云,通过组合主要成分分析(PCA)的优点来实现液压阀故障的精确诊断,其维数减少和极端梯度升压(XGBoost)算法。首先,为了获得压力信号的主成分特征集,利用PCA来减小液压方向阀的测量入口和出口压力信号的尺寸。其次,通过用主组件特征集更换原始故障集来构建机器学习样本。第三,使用MLS来创建XGBoost模型以诊断阀门故障。最后,基于模型评估指标,如精度,召回率和F1分数,用于将XGBoost模型与分类和回归树(推车)模型和随机林(RFS)模型进行比较。研究结果表明,该方法可以有效地识别液压方向阀中的阀故障并具有更高的故障诊断精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号